• Title/Summary/Keyword: Electrical energy generation

Search Result 1,330, Processing Time 0.024 seconds

Realtime Monitoring system of Residential Photovoltaic system (태양광-풍력 복합발전시스템의 출력제어 특성에 관한 연구)

  • Lee J.I.;Suh J.S.;Yoon P.H.;Cha I.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.933-937
    • /
    • 2003
  • The development of the solar and the wind power energy are necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of MW scale has been developed, but it still has a few faults with the weather condition. In order to solve these existing problems, combined generation system of photovoltaic(400w) and wind power generation system(400w) was suggested. It combines wind power and solar energy to have the supporting effect from each other However, since even combined generation system cannot always generate stable output with ever-changing weather condition, power compensation device that uses elastic energy of spiral spring to combined generation system was also added for the present study. In an experiment, when output of system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator

  • PDF

A Study on Driving Characteristics of combined Generation System 3kW Proto Type Photovoltaic/Wind Generation With Power Storage Apparatus (동력저장기능을 가지는 3kW proto type 태양광/풍력 복합발전시스템의 운전특성에 관한 연구)

  • Park, Se-Jun;Kang, Byung-Bog;Yoon, Jeong-Phil;Lim, Jung-Yeol;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.300-303
    • /
    • 2002
  • Combined generation system of Photovoltaic and wind generation have shortcoming that is different output power according to change of weather. So, the combined generation system is required backup system that such as a storage battery to supply energy, when not enough photovoltaic and wind power source for power supply equally and continually because the energy source is changeable and stable through change of weather as irradiation. temperature, wind speed. wind direction. seasons, etc.

  • PDF

PV Power Prediction Models for City Energy Management System based on Weather Forecast Information (기상정보를 활용한 도시규모-EMS용 태양광 발전량 예측모델)

  • Eum, Ji-Young;Choi, Hyeong-Jin;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.393-398
    • /
    • 2015
  • City or Community-scale Energy Management System(CEMS) is used to reduce the total energy consumed in the city by arranging the energy resources efficiently at the planning stage and controlling them economically at the operating stage. Of the operational functions of the CEMS, generation forecasting of renewable energy resources is an essential feature for the effective supply scheduling. This is because it can develop daily operating schedules of controllable generators in the city (e.g. diesel turbine, micro-gas turbine, ESS, CHP and so on) in order to minimize the inflow of the external power supply system, considering the amount of power generated by the uncontrollable renewable energy resources. This paper is written to introduce numerical models for photo-voltaic power generation prediction based on the weather forecasting information. Unlike the conventional methods using the average radiation or average utilization rate, the proposed models are developed for CEMS applications using the realtime weather forecast information provided by the National Weather Service.

An Optimal Installation Strategy for Allocating Energy Storage Systems and Probabilistic-Based Distributed Generation in Active Distribution Networks

  • Sattarpour, Tohid;Tousi, Behrouz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.350-358
    • /
    • 2017
  • Recently, owing to increased interest in low-carbon energy supplies, renewable energy sources such as photovoltaics and wind turbines in distribution networks have received considerable attention for generating clean and unlimited energy. The presence of energy storage systems (ESSs) in the promising field of active distribution networks (ADNs) would have direct impact on power system problems such as encountered in probabilistic distributed generation (DG) model studies. Hence, the optimal procedure is offered herein, in which the simultaneous placement of an ESS, photovoltaic-based DG, and wind turbine-based DG in an ADN is taken into account. The main goal of this paper is to maximize the net present value of the loss reduction benefit by considering the price of electricity for each load state. The proposed framework consists of a scenario tree method for covering the existing uncertainties in the distribution network's load demand as well as DG. The collected results verify the considerable effect of concurrent installation of probabilistic DG models and an ESS in defining the optimum site of DG and the ESS and they demonstrate that the optimum operation of an ESS in the ADN is consequently related to the highest value of the loss reduction benefit in long-term planning as well. The results obtained are encouraging.

Real-time Optimal Operation Planning of Isolated Microgrid Considering SOC balance of ESS

  • Lee, Yoon Cheol;Shim, Ji Yeon;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.57-63
    • /
    • 2018
  • The operating system for an isolated microgrid, which is completely disconnected from the central power system, aims at preventing blackouts and minimizing power generation costs of diesel generators through efficient operation of the energy storage system (ESS) that stores energy produced by renewable energy generators and diesel generators. In this paper, we predict the amount of renewable energy generation using the weather forecast and build an optimal diesel power generation plan using a genetic algorithm. In order to avoid inefficiency due to inaccurate prediction of renewable energy generation, our search algorithm imposes penalty on candidate diesel power generation plans that fail to maintain the SOC (state of charge) of ESS at an appropriate level. Simulation experiments show that our optimization method for maintaining an appropriate SOC balance can prevent the blackout better when compared with the previous method.

Hydrogen Generation by Electrical Discharge Through Metal / Water System

  • Park, Yong-Man;Kang, Goo-Jin;Cha, Suk-Yal;Lee, Woong-Moo
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.198-202
    • /
    • 1996
  • Reactive metals like aluminum generate hydrogen gas when it reacts with water. Aluminum, despite its high chemical affinity with water, cannot continue the reaction due to the passive oxide layers formed on its surface. When the reaction is assisted by electrical energy dissipation in the form of discharge, the reaction is more likely to be sustained. In this report, some preliminary experimental results are presented regarding the hydrogen generation based on this scheme.

  • PDF

Optimal Microgrid Operation Considering Fuel Cell and Combined Heat and Power Generation (연료전지와 열병합 발전을 고려한 마이크로그리드의 최적 운용)

  • Lee, Ji-Hye;Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.596-603
    • /
    • 2013
  • The increase of distributed power generation is closely related to interest in microgird including renuable energy sources such as photovoltaic (PV) systems and fuel cell. By the growing interest of microgrid all over the world, many studies on microgrid operation are being carried out. Especially operation technique which is core technology of microgrid is to supply heat and electricity energy simultaneously. Optimal microgrid scheduling can be established by considering CHP (Combined Heat and Power) generation because it produce both heat and electricity energy and its total efficiency is high. For this reason, CHP generation in microgrid is being spotlighted. In the near future, wide application of microgrid is also anticipated. This paper proposes a mathematical model for optimal operation of microgrid considering both heat and power. To validate the proposed model, the case study is performed and its results are analyzed.

A Study on Optimal Operation of Microgrid Considering the Probabilistic Characteristics of Renewable Energy Generation and Emissions Trading Scheme (신재생에너지발전의 확률적인 특성과 탄소배출권을 고려한 마이크로그리드 최적 운용)

  • Kim, Ji-Hoon;Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.18-26
    • /
    • 2014
  • A microgrid can play a significant role for enlargement of renewable energy sources and emission reduction because it is a network of small, distributed electrical power generators operated as a collective unit. In this paper, an application of optimization method to economical operation of a microgrid is studied. The microgrid to be studied here is composed of distributed generation system(DGS), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems, wind power systems. Both of thermal loads and electrical loads are included here as loads. Also the emissions trading scheme to be applied in near future, the cost of unit start-up and the operational characteristics of battery systems are considered as well as the probabilistic characteristics of the renewable energy generation and load. A mathematical equation for optimal operation of this system is modeled based on the mixed integer programming. It is shown that this optimization methodology can be effectively used for economical operation of a microgrid by the case studies.

Optimized Installation and Operations of Battery Energy Storage System and Electric Double Layer Capacitor Modules for Renewable Energy Based Intermittent Generation

  • Min, Sang Won;Kim, Seog Ju;Hur, Don
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.238-243
    • /
    • 2013
  • In this paper, a novel approach for optimized installation and operations of battery energy storage system (BESS) and electric double layer capacitor (EDLC) modules for the renewable energy based intermittent generation is presented for them to be connected with an electric power grid. In order to make use of not merely the high energy density of battery but also the high power density of EDLC modules, it is very useful to devise the hybrid system which combines BESS and EDLC modules. The proposed method adopts the linear programming to calculate the optimized capacity as well as the quadratic programming to transmit the optimal operational signals to BESS and EDLC modules. The efficiency of this methodology will be demonstrated in the experimental study with the real data of wind speed in Texas.

A Study on Power Storage Apparatus of combined Generation System 3kW Proto Type Photovoltaic/Wind Generation (3kW proto type 태양광/풍력 복합발전시스템의 전력보상장치에 관한 연구)

  • Park Se-Jun;Kang Byung-Bog;Yoon Jeong-Phil;Lim Jung-Yeol;Cha In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.74-77
    • /
    • 2002
  • Combined generation system of Photovoltaic and wind generation have shortcoming that is different output power according to change of weather. So, the combined generation system is required backup system that such as a storage battery to supply energy, when not enough photovoltaic and wind power source for power supply equally and continually, because the energy source is changeable and stable through change of weather as irradiation, temperature, wind speed, wind direction, seasons, etc..

  • PDF