• Title/Summary/Keyword: Electrical degradation

Search Result 1,574, Processing Time 0.04 seconds

A Review on Degradation of Silicon Photovoltaic Modules

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Zahid, Muhammad Aleem;Kim, Jaeun;Kim, Youngkuk;Cho, Sung Bae;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2021
  • Photovoltaic (PV) panels are generally treated as the most dependable components of PV systems; therefore, investigations are necessary to understand and emphasize the degradation of PV cells. In almost all specific deprivation models, humidity and temperature are the two major factors that are responsible for PV module degradation. However, even if the degradation mode of a PV module is determined, it is challenging to research them in practice. Long-term response experiments should thus be conducted to investigate the influences of the incidence, rates of change, and different degradation methods of PV modules on energy production; such models can help avoid lengthy experiments to investigate the degradation of PV panels under actual working conditions. From the review, it was found that the degradation rate of PV modules in climates where the annual average ambient temperature remained low was -1.05% to -1.16% per year, and the degree of deterioration of PV modules in climates with high average annual ambient temperatures was -1.35% to -1.46% per year; however, PV manufacturers currently claim degradation rates of up to -0.5% per year.

Analysis on the electrical degradation characteristics of 2G HTS wires with respect to the electrical breakdown voltages

  • Kang, Jong O;Lee, Onyou;Mo, Young Kyu;Kim, Junil;Bang, Seungmin;Lee, Hongseok;Lee, Jae-Hun;Jang, Cheolyeong;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.37-40
    • /
    • 2015
  • Recently, the electrical insulation design for electrical apparatuses is important to cope with the tendency of high voltage. The degradation characteristics of a superconducting coil due to an electrical breakdown should be considered to design a high voltage superconducting coil. In this paper, the degradation characteristics of 2G high temperature superconducting (HTS) wires are studied with respect to electrical breakdown tests. To analyze the dependency of the degradation characteristics of 2G HTS wires, the electrical breakdown tests are performed with AC(alternating current) and DC(direct current) voltage. All tests are performed by applying various magnitudes of AC and DC breakdown voltages. To verify the degradation characteristics of 2G HTS wires, the tests are performed with various 2G HTS wires with respect to stabilizer materials. The degradation characteristics of 2G HTS wires, such as Ic(critical current) and index number are measured by performing electrical breakdown tests. It is found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it is concluded that the degradation characteristics of 2G HTS wires are affected by the stabilizer material and applied voltages. The cross-sectional view of 2G HTS wires is observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS wires are concerned with hardness and electrical conductivity of stabilizer layers.

Analysis of faust cause & insulation degradation on the electrical equipments for railway (철도용 전기기기의 고장요인 및 절연열화 분석)

  • 왕종배;전한준;박옥정;온정근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.207-210
    • /
    • 2001
  • Electrical equipment for railway is always experiencing wear and degradation by mechanical, electrical and environmental stress in service and the fault or the accident of high voltage main circuit directly causes operation interruption. Particularly propulsion drive of high speed switching inverter takes the form of specific degradation mechanism such as fast rising transient surge, reflective overvoltage and harmonic stress, and it is known that it threatens the long life and the reliability of electrical equipment. In this paper, statistics of fault and accident on main electrical equipment for railway are presented and also insulation degradation mechanism, which governs end life of electrical device, is analyzed. Finally the method of fault respondence and reliability improvement on the main electrical equipments will be reviewed in order to prevent operation interruption.

  • PDF

The Properties of Degradation in Epoxy Composites according to Electrical Stress

  • Park, Young-Chull;Park, Geon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.47-51
    • /
    • 2001
  • The electrical degradation phenomena of epoxy composites to be used as a molding material for transformers were studied. The electrets were first manufactured by applying high voltages to five kinds of specimens given a mixing rate, and then TSC(Thermally Stimulated Current) values at the temperature range of $-160\sim200[^{\circ}C]$ were measured from a series of experiments. The behaviour of carrier and its origin in epoxy composites were examined, respectively, And various effects of electrical degradation on epoxy composites were also discussed in this study.

  • PDF

Degradation characteristics of 2G HTS tapes with respect to an electrical breakdown

  • Kang, Jong O;Lee, Onyou;Mo, Young Kyu;Kim, Junil;Bang, Seungmin;Lee, Hongseok;Lee, Jae-Hun;Jang, Cheolyeong;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.48-52
    • /
    • 2015
  • The electrical insulation design for a superconducting coil system is important for developing high voltage superconducting apparatuses. Also, the degraded characteristics of superconducting tapes due to an electrical breakdown should be considered for superconducting coils design. In this study, the degradation characteristics of 2G high temperature superconducting (HTS) tapes were studied with respect to electrical breakdown tests. The degradation tests of 2G HTS tapes were performed with various stabilizer materials. The degradation characteristics of 2G HTS tapes such as critical current(Ic) and index number were observed by performing electrical breakdown tests. It was found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it was concluded that the degradation characteristics of 2G HTS tapes were affected by a stabilizer material and applied breakdown voltage. The cross sectional view of 2G HTS tapes was observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS tapes are concerned with hardness and electrical resistivity of stabilizer layers.

Evaluation of Material Degradation Using Electrical Resistivity Method (전기비저항법을 이용한 재료열화 평가)

  • Kim, Jeong-Pyo;Bae, Bong-Kook;Kim, Dong-Joong;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.129-136
    • /
    • 2001
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important beacuse mechanical properties of the components are degraded with time of service exposure in high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, nondestructive techniques are needed to estimate the degradation. In this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. And the DC potential drop method and destructive methods such as tensile, $K_{IC}$ and hardness tests were used in order to evaluate the degradation of 1Cr-1Mo-0.25V steels. The objective of this study is to investigate the possibility of the application of DCPD method to estimate the material degradation, and to analyse the relationship between the electrical resistivity and the degree of material degradation.

  • PDF

A Study on the Degradation Mechanism of ZnO Ceramic Varistor Manufactured by Ambient Sintering-Process (분위기 소결공정에 의해 제조된 ZnO 세라믹 바리스터의 열화기구 연구)

  • 소순진;김영진;박춘배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.383-389
    • /
    • 2000
  • The relationship between the DC degradation characteristics of the ZnO varistor and the ambient sintering-process is investigated in this study. ZnO varistors made o matsuoka’s composition were fabricated by standard ceramic techniques. The ambient sintering-process is performed at the extraordinary electrical-furnace which is equipped with the vacuum system. Gases used in sintering process were oxygen nitrogen argon and air. Using XRD and SEM the phase and microstructure of samples were analyzed respectively. The conditions of DC degradation tests were conducted at 115$\pm$2$^{\circ}C$ for 13 h. Current-voltage analysis is used to determine nonlinear coefficients($\alpha$). Frequency analysis are performed to understand electrical properties as DC degradation test. From above analysis it is found that the ZnO varistor sintered in oxygen atmosphere showed superior properties at the DC degradation test and degradation phenomenon of ZnO varistor is caused by the change of electrical properties in grain boundary. These results are in accordance with Gupta’s degradation model.

  • PDF

Investigation on Oil-paper Degradation Subjected to Partial Discharge Using Chaos Theory

  • Gao, Jun;Wang, Youyuan;Liao, Ruijin;Wang, Ke;Yuan, Lei;Zhang, Yiyi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1686-1693
    • /
    • 2014
  • In this paper, oil-paper samples composed of transformer windings were used to investigate the insulation degradation process subjected to partial discharge (PD), with artificial defects inside to simulate the PD induced insulation degradation. To determine appropriate test voltages, the breakdown time obtained through a group of accelerated electrical degradation tests under high voltages was firstly fitted by two-parameter Weibull model to acquire the average breakdown time, which was then applied to establish the inverse power law life model to choose advisable test voltages. During the electrical degradation process, PD signals were synchronously detected by an ultra-high frequency (UHF) sensor from inception to breakdown. For PD analysis, the whole degradation process was divided into ten stages, and chaos theory was introduced to analyze the variation of three chaotic parameters with the development of electrical degradation, namely the largest Lyapunov exponent, correlation dimension and Komogorov entropy of PD amplitude time series. It is shown that deterministic chaos of PD is confirmed during the oil-paper degradation process, and the obtained results provide a new effective tool for the diagnosis of degradation of oil-paper insulation subjected to PD.

The Characteristics on the Accelerated Degradation of Bi-based Varistor fabricated with ZnO Nano-powder (ZnO 나노파우더로 제조된 Bi계 바리스터의 가속열화 특성)

  • Wang, Min-Sung;Wang, Zengmei;Lee, Dong-Gyu;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.203-204
    • /
    • 2006
  • Nano-Varistors fabricated with ZnO 30nm and 80nm powders were studied about the electrical characteristics with AC accelerated degradation in this paper Especially, ZnO nano-powder varistors were sintered m air at $1050^{\circ}C$ and analyzed the phenomenons of before and after AC degradation test. The stress conditions of AC degradation test were $1.0V_{1mA}$ $115{\pm}2^{\circ}C$ for 24h. 80nm-varistor was exhibited better performance than 30nm-varistor m the electrical stabilities. And then 80nm-varistor resulted m the degradation characteristics that the variation rate of operating voltage, nonlinear coefficient and leakage current was -0 3%, -0 4% and -3 3%, respectively.

  • PDF

Analysis of Correlation Between Silicon Solar Cell Fabrication Steps and Possible Degradation (실리콘 태양전지 제조공정과 열화의 상관관계 분석)

  • Yewon Cha;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.16-22
    • /
    • 2023
  • In a solar cell, degradation refers to the decrease in performance parameters caused by defects originated due to various causes. During the fabrication process of solar cells, degradation is generally related to the processes such as passivation or firing. There exist sources of many types of degradation; however, the exact cause of Light and elevated Temperature Induced Degradation (LeTID) is yet to be determined. It is reported that the degradation and the regeneration occur due to the recombination of hydrogen and an arbitrary substance. In this paper, we report the deposition of Al2O3 and SiNX on silicon wafers used in the Passivated Emitter and Rear Contact (PERC) solar structure and its degradation pattern. A higher degradation rate was observed in the sample with single layer of Al2O3 only, which indicates that the degradation is affected by the presence or the absence of a passivation thin film. In order to alleviate the degradation, optimization of different steps should be carried out in consideration of degradation in the solar cell fabrication process.