• Title/Summary/Keyword: Electrical conductivity.

Search Result 3,513, Processing Time 0.028 seconds

Correlation between Electrical Conductivity and Shielding Effectiveness of Cementitous Composites according to Length and Volume Fraction of Steel Fiber (섬유 종류에 따른 섬유 보강 시멘트 복합체의 전기적 특성에 대한 실험적 연구)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Han, Seung-Hyeon;Choi, Youn-Sung;Kim, Moon-Kyu;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.183-184
    • /
    • 2023
  • The purpose of this study is to compare and analyze the effect of type and volume fraction of fiber on the electrical conductivity and shielding effectiveness of cementitious composites. The large specific surface area of amorphous metallic fiber, as well as the high number of fibers per unit weight, provided an advantage in the formation of conductive path. As the result, the electrical conductivity of amorphous metallic fiber was evaluated to be higher, and the shielding effectiveness was also higher. However, the shielding effectiveness according to electrical conductivity was confirmed to have a threshold point, and further research is needed to improve it.

  • PDF

Effects of Sintering Conditions on the Electrical Conductivity of 1 wt% Y2O3-Doped AlN Ceramics (1 wt% Y2O3 첨가계 AlN 세라믹스의 소결 조건에 따른 전기전도도)

  • Lee, Won-Jin;Lee, Sung-Min;Shim, Kwang-Bo;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.116-123
    • /
    • 2007
  • Electrical properties of AlN ceramics sintered with 1 wt% $Y_2O_3$ have been investigated. From the impedance spectroscopy, electrical conductivity of grain boundary was found to be much lower than that of grain. DC conductivity measurement showed the electrode polarization effects caused by blocking electrode. The heat-treatment at $1700^{\circ}C$ of the specimen sintered at $1850^{\circ}C$ transformed continuous pain boundary phases along triple boundary junctions into isolated particles in grain comers. The heat-treatment induced decreases both in grain and grain boundary conductivity, and in DC electrical conductivities. From the analysis on the transference number, ionic conductivity was shown to be more dominant than electron conductivity, which was due to ion compensation mechanism during oxygen incorporation into grain.

A Study on the Thermal Conductivity and Mechanical Properties of Electrical Insulation Polymer Composite Materials (실리콘 고분자 복합소재의 열전도도와 기계적 물성에 관한 연구)

  • Won-il Choil;Kye-Kwang Choi
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.37-43
    • /
    • 2024
  • With the development of technology in the electrical and electronic field, research on heat dissipation materials that can efficiently emit and control heat to solve the heat generation problem is being actively conducted. Since heat dissipation materials require electrical insulation and thermal conductivity, the polymer composite material was manufactured by mixing chemically stable silicone resins and ceramic fillers, and thermal conductivity and mechanical properties were observed. At the same filling amount, the larger the particle size and the higher the high thermal conductivity filler was added, the higher the thermal conductivity was, mechanical properties were confirmed to have higher tensile strength and elongation as the particles were smaller and the tissue was denser. After selecting materials in consideration of thermal conductivity and mechanical properties, an appropriate mixing ratio is considered important.

Electrical Properties of TiO$_2$added ZnO (SnO$_2$가 첨가된 ZnO의 전기적성질)

  • 최우성;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.221-223
    • /
    • 1995
  • The electrical conductivity of SnO$_2$added ZnO was investigated using the DC and AC methods. The electrical conductivity of SnO$_2$added ZnO was decreased with increasing the concentration of SnO$_2$. The cal쳐lated effective dielectric constants of 3 mol%, 5 mo1%, and 7 mol% are ~7, ~13, and ~120, respectively. The factor of the decrease for the electrical conductivity seems to be the increase of the resistance of grain decreasing the size of grain.

Electrical Conductivity of YO$_{1.5}$-TaO$_{2.5}$-MgO Based Fluorite Phase (YO$_{1.5}$-TaO$_{2.5}$-MgO 계 Fluorite 상의 전기전도도)

  • Choi, Soon-Mok;Kim, Shin;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.521-527
    • /
    • 1998
  • Electrical conductivity of fluorite structure phases in the {{{{ {Y }_{0.8 } }}{{{{ { Ta}_{ 0.2} {O }_{1.7 }-MgO }} system has been studied. Electrical conductivity of 8mol% MgO doped {{{{ {Y }_{0.8 } }} {{{{ {Ta }_{0.2 } {O }_{1.7 } }} fluorite phase was lower than that of the undoped {{{{ {Y }_{0.8 } }}{{{{ {Ta }_{0.2 } {O }_{1.7 } }} When {{{{ { P}_{H2O } }} was increased electrical conductivity of {{{{ {Y }_{0.8 } }}{{{{ {Ta }_{0.2 } {O }_{1.7 } }} increased linealy with {{{{ { P}`_{H2O } ^{ {1 } over {2 } } }} The {{{{ {Y }_{0.8 } }}{{{{ {Ta }_{0.2 } {O }_{1.7 } }} fluorite phase exhibited higher electrical conductivity in wet atmosphere than in dry atmosphere. The identical trend was observed from the 8mol% MgO doped {{{{ {Y }_{0.8 } }}{{{{ {Ta }_{0.2 } {O }_{1.7 } }} fluorite phase.

  • PDF

Effects of Added Cr Element on the Tensile Strength and Electrical Conductivity of Cu-Fe Based Alloys (Cu-Fe계 합금의 강도 및 전기전도도에 미치는 Cr 원소첨가의 영향)

  • Kim, Dae-Hyun;Lee, Kwang-Hak
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.60-64
    • /
    • 2010
  • This study looked at high performance copper-based alloys as LED lead frame materials with higher electrical-conductivity and the maintenance of superior tensile strength. This study investigated the effects on the tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases when Cr was added in Cu-Fe alloy in order to satisfy characteristics for LED Lead Frame material. Strips of the alloys were produced by casting and then properly treated to achieve a thickness of 0.25 mm by hot-rolling, scalping, and cold-rolling; mechanical properties such as tensile strength, hardness and electrical-conductivity were determined and compared. To determine precipitates in alloy that affect hardness and electrical-conductivity, electron microscope testing was also performed. Cr showed the effect of precipitation hardened with a $Cr_3Si$ precipitation phase. As a result of this experiment, appropriate aging temperature and time have been determined and we have developed a copper-based alloy with high tensile strength and electrical-conductivity. This alloy has the possibility for use as a substitution material for the LED Lead Frame of Cu alloy.

Modified electrical conductivity test method for evaluation concrete permeability

  • Pilvar, Amirreza;Ramezanianpour, Ali Akbar;Rajaie, Hosein
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.865-880
    • /
    • 2015
  • Standard test method for bulk electrical conductivity (ASTM C1760) provides a rapid indication of the concrete's resistance to the penetration of chloride ions by diffusion. In this paper a new approach for assessing the bulk electrical conductivity of saturated specimens of hardened concrete is presented. The test involves saturating concrete specimens with a 5 M NaCl solution before measuring the conductivity of the samples. By saturating specimens with a highly conductive solution, they showed virtually the same pore solution conductivity. Different concrete samples yield different conductivity primarily due to differences in their pore structure. The feasibility of the method has been demonstrated by testing different concrete mixtures consisting ordinary and blended cement of silica fume (SF) and calcined perlite powder (CPP). Two standard test methods of RCPT (ASTM C1202) and Bulk Conductivity (ASTM C1760) were also applied to all of the samples. The results show that for concretes containing SF and CPP, the proposed method is less sensitive towards the variations in the pore solution conductivity in comparison with RCPT and Bulk Conductivity tests. It seems that this method is suitable for the assessment of the performance and durability of different concretes containing supplementary cementitious materials.

The Structural Investigation for the Enhancement of Electrical Conductivity in Ga-doped ZnO Targets

  • Yun, Sang-Won;Seo, Jong-Hyeon;Seong, Tae-Yeon;An, Jae-Pyeong;Gwon, -Hun;Lee, Geon-Bae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.2-243.2
    • /
    • 2011
  • ZnO materials with a wide band gap of approximately 3.3 eV has been used in transparent conducting oxides (TCO) due to exhibitinga high optical transmission, but its low conductivity acts as role of a limitation for conducting applications. Recently, Ga or Al-doped ZnO (GZO, AZO) becomes transparent conducting materials because of high optical transmission and excellent conductivity. However, the fundamental mechanism underlying the improvement of electrical conductivity of the GZO is still the subject of debate. In this study, we have fully investigated the reasons of high conductivity through the characterization of plane defects, crystal orientation, doping contents, crystal structure in Zn1-xGaxO (x=0, 3, 5.1, 5.6, 6.6 wt%). We manufactured Zn1-xGaxO by sintering ZnO and Ga2O3 powers, having a theoretical density of 99.9% and homogeneous Ga-dopant distribution in ZnO grains. The GZO containing 5.6 wt% Ga represents the highest electrical conductivity of $7.5{\times}10^{-4}{\Omega}{\cdot}m$. In particular, many twins and superlattices were induced by doping Ga in ZnO, revealed by X-ray diffraction measurements and TEM (transmission electron microscopy) observations. Twins developed in conventional ZnO crystal are generally formed at (110) and (112) planes, but we have observed the twins at (113) plane only, which is the first report in ZnO material. Interestingly, the superlattice structure was not observed at the grains in which twins are developed and the opposite case was true. This structural change in the GZO resulted in the difference of electrical conductivity. Enhancement of the conductivity was closely related to the extent of Ga ordering in the GZO lattice. Maximum conductivity was obtained at the GZO with a superlattice structure formed ideal ordering of Ga atoms.

  • PDF

Factors Affecting the Electrical Properties of Bentonite Slurry (벤토나이트 슬러리의 전기적 특성에 대한 영향인자 분석)

  • Yoo, Dong-Ju;Oh, Myoung-Hak;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.21-32
    • /
    • 2006
  • Factors affecting the electrical properties of bentonite slurry were identified and electric conduction mechanism in slurry was examined. Electrical conductivity of bentonite and soil-bentonite slurry linearly increases with the bentonite content. Test result indicated that the change In electrical conductivity of slurry was mainly caused by dissolved cations from bentonite particles. The relationship between electrical conductivity and bentonite content was affected by the initial electrical conductivity of slurry solution and fine content in soil-bentonite mixture. Such influences were evaluated and the calibrated relationships were suggested. Based on the suggested relationship between electrical conductivity and bentonite content, bentonite content in various bentonite and soil-bentonite slurry can be quantitatively evaluated by using electrical conductivity measurement method.

Thermal stability of polyaniline based conductive polymer blend (Polyaniline계 전도성 고분자의 열안정 특성)

  • 백운석;윤호규;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.215-218
    • /
    • 1998
  • The thermal stability of polyaniline-camphorsulfonic acid(PANI-CSA) film was studied as a function of temperature and time. A decrease in electrical conductivity of PANI-CSA film occurred when PANI-CSA film is subjected to temperature above 60$^{\circ}C$. From the result of thermogravimetry (TG), it was thought that the deterioration in electrical conductivity of PANI-CSA film was due to evaporation of water and residual solvent.

  • PDF