• Title/Summary/Keyword: Electrical Stimuli

Search Result 109, Processing Time 0.022 seconds

Design and Implementation of Transcutaneous Electrical Nerve Stimulation System for the Integration with Mobile Phone (휴대폰 내장을 위한 경피신경 자극치료기의 설계 및 구현)

  • Woo Sang-Hyo;Yoon Ki-Won;Lee Jyung-Hyun;Park Hee-Joon;Won Chul-Ho;Cho Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.360-368
    • /
    • 2006
  • Recently, performance of the mobile phone has increased dramatically. Due to this, it is possible to integrate various biotechnology. There are many ventures to integrate biotechnology with mobile phone, because of increasement interest of peoples well-being. The transcutaneous electrical nerve stimulation can Improve the circulation of blood and suppress a pain. To integrate the transcutaneous electrical nerve stimulation with mobile phone, it is necessity to make small, low power, and safe module. In this paper, the transcutaneous electrical nerve stimulation module is designed and implemented by small boost convertor. The value of tank capacitor, which is the total stimulus energy to human, can be chosen to insure safe condition. The confirm the of operation of designed module, a small micro-controller is used to make system and test the module. The implemented system is small and consumes a low enough power to be integrated with mobile phone.

  • PDF

Analysis of the Effect on Attention and Relaxation Level by Correlated Color Temperature and Illuminance of LED Lighting using EEG Signal (뇌파 분석을 통한 LED조명의 색온도와 조도가 집중도와 이완도에 미치는 영향 분석)

  • Shin, Ji-Yea;Chun, Sung-Yong;Lee, Chan-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.9-17
    • /
    • 2013
  • Preferred combinations of illuminance and color temperature of lighting depend on daily living activities. We investigated whether the illumination stimuli of LED lighting can enhance attention and relaxation level by controlling color temperature and illuminance level according to activities. Illuminations and color temperatures of LED flat panels are controlled in accordance with activities such as office work and resting. The attention and relaxation level under the task specific lightings are compared with those under normal lighting condition. Single channel EEG signals from the NeuroSky's Mindset are used to estimate attention and relaxation level of human subjects under different lighting conditions. Experiment results show that high color temperature with high illuminance of LED lightings (6600K, 800lx) shows improved attention level compared with conventional lighting conditions (4000K, 500lx).

Study on the Performance of Flexible Tactile Sensors According to the Substrate Stiffness (기저판의 탄성에 따른 유연촉각센서의 성능변화 연구)

  • Kim, Song Ho;Kim, Ho-Chan;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.104-109
    • /
    • 2021
  • Tactile sensors and integrated circuits that detect external stimuli have been developed for use in various industries. Most tactile sensors have been developed using the MEMS(micro electro-mechanical systems) process in which metal electrodes and strain sensors are applied to a silicon substrate. However, tactile sensors made of highly brittle silicon lack flexibility and are prone to damage by external forces. Flexible tactile sensors based on polydimethylsiloxane and using a multi-walled carbon nano-tube mixture as a pressure-sensitive material are currently being developed as an alternative to overcome these limitations. In this study, a manufacturing process of pressure-sensitive materials with low initial electrical resistance is developed and applied to the fabrication of flexible tactile sensors. In addition, flexible tactile sensors are developed with pressure-sensitive materials dispensed on a substrate with flexible mechanical properties. Finally, a study is conducted on the change in electrical resistance of pressure-sensitive materials according to the modulus of elasticity of the substrate.

Study on Solution-Processed Flexible Electrochromic Devices with Improved Coloration Efficiency and Stability

  • Gihwan Song;Haekyoung Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • According to the recent global warming, it is necessary to use energy efficiently together with eco-friendly energy. The development of alternative technologies is requisite for managing the current energy and climate crises. In this regard, "smart windows," which can control solar radiation, can be used to mitigate energy demands. Electrochromic devices (ECDs) effectively control the amount of solar energy reaching commercial and other living areas and maintain climate conditions via color modulation in response to small external stimuli, such as temperature and light irradiation. However, the performance and the stability of ECDs depend on the state of the electrolyte and sealing of the device. To resolve the aforementioned issues, an ECD was manufactured by using a poly (methyl methacrylate) (PMMA)-based gel polymer electrolyte (GPE), and a laminating method was used to adequately seal the ECD. The concentrations of PMMA, acetonitrile (ACN), and ferrocene (Fc) were controlled to optimize the composition of the GPE to achieve an enhanced electrochromic performance. The fabricated GPE-based ECD afforded high optical contrast (~81.92%), with high electrochromic stability up to 10,000 cycles. Moreover, the lamination method employing the GPE could be used to fabricate large-area ECDs.

OPTIMIZATION OF PARAMETERS IN MATHEMATICAL MODELS OF BIOLOGICAL SYSTEMS

  • Choo, S.M.;Kim, Y.H.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.355-364
    • /
    • 2008
  • Under pathological stress stimuli, dynamics of a biological system can be changed by alteration of several components such as functional proteins, ultimately leading to disease state. These dynamics in disease state can be modeled using differential equations in which kinetic or system parameters can be obtained from experimental data. One of the most effective ways to restore a particular disease state of biology system (i.e., cell, organ and organism) into the normal state makes optimization of the altered components usually represented by system parameters in the differential equations. There has been no such approach as far as we know. Here we show this approach with a cardiac hypertrophy model in which we obtain the existence of the optimal parameters and construct an optimal system which can be used to find the optimal parameters.

  • PDF

OPTIMIZATION OF PARAMETERS IN BIOLOGICAL SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.811-818
    • /
    • 2008
  • Biological systems with both protein-protein and protein-gene interactions can be modeled by differential equations for concentrations of the proteins with time-delay terms because of the time needed for DNA transcription to mRNA and translation of mRNA to protein. Values of some parameters in the mathematical model can not be measured owing to the difficulty of experiments. Also values of some parameters obtained in a normal stress condition can be changed under pathological stress stimuli. Thus it is important to find the effective way of determining parameters values. One approach is to use optimization algorithms. Here we construct an optimal system used to find optimal parameters in the equations with nonnegative time delays and apply this optimization result to the Nuclear factor-${\kappa}B$ pathway.

  • PDF

A Study on Design of FES Hardware System for Walking of Paraplegics (하반신마비 환자의 보행기능 제어를 위한 FES하드웨어 시스템 설계에 관한 연구)

  • 김근섭;김종원
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1991
  • This paper describes and discusses the employment of HMG pattern analysis to provide upper-motor-neuron paraplegics with patient-responsive control of FES ( functional electrical stimulation) for the purpose of walker-supported walking. The use of above-lesion EMG signals as a solution to the control problem is considered. The AR(autoregressive)parameters are identified by time-varying nonstationary Kalman filler algorithm using DSP chip and classified by fuzzy theory. The control and stimuli part of the below-lesion are based on micro-processor(8031). The designed stimulator is a 4-channel version. The experiments described above have only attempted to discriminate between standing function and sit-down function A further advantge of the this system Is applied for motor rehabilitation of social readaption of paralyzed humans.

  • PDF

Development of the brain stimulator for stroke patients via ZigBee technology and user-friendly, graphical user-interface based software for controlling stimuli on PC (ZigBee를 이용한 뇌졸중 환자용 뇌자극기 개발과 PC 기반 자극 제어용 사용자 인터페이스 개발)

  • Kim, G.H.;Yang, Y.S.;Lee, S.M.;Kim, N.G.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.33-35
    • /
    • 2006
  • We studied the prototypal developments of Plastic Cortex Stimulator (PCS) for stroke patients. The PC sends the stimulation parameters (amplitude, pulse width, cycle, etc.) to the transmitter ZigBee module through serial port. The receiver ZigBee module generates stimulation waveform. The generated output can be controlled by the PC program. Further study can be expanded to portable handset such as PDA using ZigBee. The wireless control of PCS with the handset can help the tele-rehabilitation.

  • PDF

A new approach for the saccadic eye movement system simulation (Saccade 안구운동계의 시뮬레이션)

  • 박상희;남문현
    • 전기의세계
    • /
    • v.26 no.1
    • /
    • pp.87-90
    • /
    • 1977
  • Various simulation techniques were developed in the modeling of biological system during the last decades. Mostly analog and hybrid simulation techniques have been used. The authors chose the Digital Analog Simulation (DAS) technique by using the MIMIC language to simulate the saccadic eye movement system performances on the digital computer. There have been various models presented by many investigators after Young & Stark's sampled-data model. The eye movement model chosen by the authors is Robinson's model III which shows the parallel information processing characteristics clearly to the double-step input stimuli. In the process of simulation, the parameter and constants used were based on the neurophysiological data of the human and animals. The analog model blocks were converted to the corresponding MIMIC block diagrams and programmed into the MIMIC statements. The program was run on the CDC Cyber 72-14 computer. The essential input stimulus was double-step of 5 and 10 degrees, and target durations chosen were 50,100 and 150 msec. The results obtained by the DAS technqiue were in good agreement with analog simulation carried out by other investigators as well as with the experimental human saccadic eye movement responses to double-step target movements.

  • PDF

Hydrogen Sensor and Neuromorphic Applications Using Correlated Materials (강상관계 소재를 이용한 수소 센서 및 수소 뉴로모픽 소자)

  • Oh, Chadol;Son, Junwoo
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.17-26
    • /
    • 2019
  • The metal-to-insulator transition (MIT) with external stimuli is one of the main issues in correlated oxides. The physical properties are extremely sensitive to band filling, because the MIT is attributed to the strong correlation between electrons in narrow d-band. Since hydrogen is the smallest and lightest element, it is not only likely to doped reversibly in oxides, but also acts as a dopant to provide electrons. The correlated oxides showing MIT are structurally expanded after hydrogenation, and their electrical properties are drastically changed. Researches on this phenomenon have been actively carried out to date. They are of great scientific importance, and the use of this material is very diverse, including the development of next-generation hydrogen sensor, or hydrogen-based neuromorphic devices.