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Under non-stress condition, biological processes at the level of gene, molecule
or physiology can be described by ordinary differential equations with nominal
values of parameters that are obtained from experiments([1], [3], [7], [9]-[10], [12],
[14]). But values of some parameters are changed depending on specific stress
stimuli and can not be measured for the difficulty of experiments. The typical
method to obtain the undetermined values is the method of trial and error,
making the solutions of the differential equations fit some desired profiles through
the trials and errors of changing the values. There are no rule for the process of
trial and error. And changing values of many undetermined parameters is not
physical or pharmacological approach to treat disease([2], [5], [13]). Thus, it is
needed to construct the method to obtain the desired profiles by systematically
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ABSTRACT. Biological systems with both protein-protein and protein-gene inter-
actions can be modeled by differential equations for concentrations of the proteins
with time-delay terms because of the time needed for DNA transcription to mRNA
and translation of mRNA to protein. Values of some parameters in the mathe-
matical model can not be measured owing to the difficulty of experiments. Also
values of some parameters obtained in a normal stress condition can be changed
under pathological stress stimuli. Thus it is important to find the effective way of
determining parameters values. One approach is to use optimization algorithms.
Here we construct an optimal system used to find optimal parameters in the

equations with nonnegative time delays and apply this optimization result to the
Nuclear factor-«B pathway. |
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1. Introduction

changing only a portion of the undetermined parameters values.
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We will use the optimization method that is the way to get the desired profiles
and optimal values of some parameters in general biological systems with time
delay terms. Although there are a large number of studies based on optimization,
there are few studies on this topic as far as we know. Joshi[ll] studied on
the mathematical model describing the interaction of HIV and T-cells by using
optimization. Choo and Kim[4] obtained optimal parameters in a biological
model] without time-delay terms. But biological systems containing both protein-
protein and protein-gene interactions can be modeled as differential equations
with time-delay terms for the DNA transcription and mRNA translation. Thus
we will apply optimization to the differential equations, which can describe the
effect of the time delay. o

Consider the differential equations.

5i(t) = filyr (), u(t)), 1<i<n and 0<t<T (1.1)
with initial conditions
yi(t) = gi(t), min{—7;4|]1 <j<n} <t<0 - (12)

where g; is a known function, n,m are natural numbers, the state vector y =
(y1,- -+ ,Yn) wWith state variables y;, the control vector u = (uy, -+ ,Up,) with
control terms u;, and y-,(t) = (y1(t — 71), -+ ,yn(t — Tin)) with 7 > 0(1 <
k <n)and y,, ;(t) = y;(t — 7i;). The equations (1.1)-(1.4) with all time delays
7;: = 0 are the biological model discussed in Choo and Kim[4]. Thus this work
is an extension of that in [4].

The objective functional is defined as

]0 S (elt) — welt }2+Zu (t) dt (1.3)

el

where [ is an index subset of {i|]1 < i < n} and e is t_-he indeix function of inter-
est. In the case that (1.1)-(1.2) are the mathematical model for NF-kB(Nuclear
Factor kappaB) pathway, an index function may be the profile of the concen-
tration of nuclear NF-xB, the protein that regulates the expression of numerous
genes involved in cell cycle, migration, apoptos1s tumorlgenesm mﬂammatlon
and various autoimmune diseases. o . |
The aim of this study is to find an optlmal control vector u* = (uj,- - ,_u;“n')
satisfying | - o
N1 2 N2 C
sty =mip [ Z{ye ~ ) + _Zuj ®d 4
Ll __ | 7=1 o
where U is a control set.

In this paper, a general type of delay differential equations for descrlbmg
dynamics of biological systems is considered. In section 2, we construct an
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optimal system corresponding the control problem (1.1)-(1.4) which is used to
find the optimal control terms. And we obtain the uniqueness of the optimal
system. In section 3, we give the delay differential equations descrlbmg the
NF-kB pathway for the application of the results in section 2.

2. Optimal system

In order to construct the existence theorem of optimal control terms, the
theorem in Fleming and Rishel{6] was used to prove the existence of optimal
control terms in Choo and Kim[4] in which all time delays in (1.1) are zero. Under
the assumption of the existence of optimal control vectors satisfying (1.1)-(1.4),
we will find the optimal control vector u* and its corresponding state vector y™

through introducing another state variables called adjoint variables which satisfy
some ODEs.

efinig 6;; = () = : ;
&% 0, otherwise ane 0, otherwse

we obtain the following theorem about the optimal system.

Theorem 2.1. Letu* and y* be the optimal control vector and its corresponding

solutions, respectively. Then there exist adjoint variables \;(1 < ¢ < n) satisfying
the optimal system

- Of;(yz, (t+ T3),u* (E+ 752))
Ai(t) = 2{%( }587, ant t+T3;) A - 3; ~ ’ , el

with the tmnsversalfity conditions
Ai(T)=0,1<i<n

where the optimal control terms u*

; satisfy

.. . n 6 p *‘ ,'U,* |
uj{t) = “% 2Nt ! (yﬂa()i)- (t)), j=1,,m
i=1 J

Proof. Using new functions A;(t)(1 < i < n) with the transversality condition
Xi(T) = 0 and integration by parts, we obtain,

J(u) = / Z(ye Ye) +Zu +Z)\ {fi(yr,,u) — Us}dt (2.1)

fcl

/0 Zyﬁ ye Z 3+ZAf1(yT, u)+ZXyzdt+Z)\ yz(O

eci 7=1



814 S.M. Choo

Since yr,(t) varies depending on the values of u, replace y,,(f) in (2.1) with

d
yr,(t,u) and apply 0 = a—;.] (u* + zh)|z—0o for all h in an open ball centered at
0 € R™. Then we obtain

T m
- Ovye(t,u* + zh .
0=/ —22(%—3}2)- yel gx ) +22ujh,-
0 tel z=0  j=1
3fz(y.n, *) Byn,;(t, u* + xh) = Ofi(yr,, u*)
a3 2 o + ) LoDy,
=0 ;-1 J

. Oy;(t,u* + zh)
+ Z Ai =

1=1 =0

which implies the desired result. []

Following the idea of {11}, we obtain the uniqueness theorem of the optimal
system, optimal control vector, and its corresponding state vector.

Theorem 2.2. Assume that the solutions of (1.1)-(1.2) and the optimal system
are bounded and the followings hold.

(i) filyr,,w)(1 <1< n) are linear in u.

8f i('a ')
(ii) fi(-,u) and
where 0; is Y-, j or uj. Then the optimal control vectors and the bounded solu-
tions of the optimal system are unique for a sufficiently small T'.

(1 <14, < n) satisfy the Lipschitz condition

Proof. Suppose u; and 27 (1 < i < n) are also the solutions of the optimal system
in Theorem 2.1 with optimal control vector v*. Then we obtain for 1 <2 < n

Ai(t) — gai(t)

= 2{z () — ¥} (1)} - Znﬁ {A PPN 21 Gk DR s 0

6y‘rj,i

~ pi(t+ sz‘)af’(z‘fj (¢ +;::?=i'”*(t + 7ji)) }, ver
G (0) = () = filyn 0,0 (®) - filh (), v (1)
where
- afi(yr (t), u"
50 = -L 30 (RO.0)
i=1 J
50 = -2 ZEEOTO Gy
i=1 J
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Taking ui(t) = e§i(t), z(t) = e 5:(), M(t) = e *tAi(t) and pi(t) =
e % {1;(t) for a constant s, we obtain

— ) - O+ s{ul) - mO)) (2.2)
e ~ 8_7' .,"i.t,u"‘t+1'-,-
= —2e*Y{Z] (t) — 9; (t)}ou — Zﬂji{)\j (t + 75:) ity J(B)y ( i)
j=1 Tyt
PN Tﬁ)afj(z:,. (¢ + ;a:i»v*(t + 754)) }
g; (t) — 2; (t) + s{g;(t) — 2 (1)) (2.3)

= e " {fi(y7,(£), w" (1)) — filz7, (2), v" (1))}

Multiplying (2.2) and (2.3) by A\:(¢) — :(¢) and §2(t) — 27(t), respectively, in-
tegrating the results, and using the boundedness of A;, ;,¥;, 2], the condition

(i)—(ii), and the Cauchy-Schwarz inequality, we obtain for some constants C;
and Cs,

n

> |3 40 - OP + {51 - D)

i=1

T
3 ~ ~ %k - % 2
v [0 - mOF + {570 - 50} a
. n T ) . 2 | ’
<(C1+Ce®T)S) /0 () — 2i(6))? + {3200 — 57(8)} dt.
i=1
It follows from the just above inequality that for 1 < < n,

T | 0
(s — C1 — Coe®T) /0 M@ — @)Y+ {9:(t) — 25 (t)} dt <0.

Choosing s such that s — C; — Cpe?*T > 0 for sufficiently small T, the eqtia,lities
Ai = i, yF =z, and u! = v} (1 <7 < n) hold . Thus the proof is complete. O

3. Application of parameters’ optimization to the NF-<B pathway

In this section, we apply optimization obtained in section 2 to the mathemat-
ical model for the NF-xB pathway which plays crucial roles in cellular responses
to various conditions, such as growth factors, hypoxia, infections, and physical
stress stimuli. And the activation of NF-B is constitutively increased in many

types of cancer. Then the NF-kB pathway is one of drug targets for treating
cancer. | |
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Under normal conditions, NF-xB is kept in the cytoplasm by the inhibitor
protein IxkB. When IxB kinase(IKK) phosphorylates IxB, NF-kB is released
from its inhibitor IxB and then translocates into the nucleus and activates gene

IkB, giving rise to a negative feedback loop. This process can be modeled as
follows(see [15]).

dN
— =-aN-IT+dN:I+nN:I:K+gN:I-iyN+enN, (3.1)
dl
—=—aN-I+dN:I-al K+dy:K+sNa(t=7)
— (g1 +inI+erl, | |
dN : I | |
— =a1N.I—d1N:I—a2(N:I)'K+d2NifiK—92Ni
I+en. Ny I
dN, - |
el —a\Np - In +diNp : In +inN —enNy
dl, | .
e —a1Np - In+di Ny In + 011 —e11,
3
dN,;t =aiN, I, —dyN, : I, —en. N, : I,
dK | | '
— k@) —ax(N:D)- K+ (d2+m)N:I:K—al-K
+(d3+T2)I:K |
I: K
i?--agl K—(ds+m): K
dN : ] : K

———=a(N:I)- K~ (da+m)N:1: K

where N, I, K, N, and I,, represent concentrations of NF-xB, IxB,IKK, nuclear
NF-«xB, and nuclear IxB, respectively. All lowercase symbols are positive pa-
rameters in Hoffman et al[8] And the symbol “A - B” means the product of A
and B, and the symbol “A : B” the concentration of the complex of A and B.
Let the index function be the known profile N,, of the concentration of nuclear
NF-«<B and the control terms are the association/dissociation rate constants
a1,d; of NF-kB and IkB. Then all 7j; = 0 except for To4 = T >0, so we obtain
the optimal system in section 2 with (3.1) and y3 = N, yp = I, y3 = N : I,
y4:Nna y5:Ina Y6 = N, 'Ina y7 =K yBZIK and 99=N I'K -

filyr, (¢ + i), w (E + 7))

880) = 209 (0) - ME(O)du ~ Y ma e ) 2

| =1 |
:'“{Al'(-_—*al‘[*—'&}v)ﬁ'/\z - (—a I*)+/\3 aII*}
Xg(_t) = —-{Al ‘ (—-a;N* — iN) + )\2 . (—al ._-— agK — 91 — '&]) + A3 a’fN"‘
+/\5-?:1+A7°(—03K*)+/\8°03K}
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A3(t) = —{ A1 (d} + g2) + A2 - d} + A3+ (—d} — a2 K™ — g2)
+ A7+ (—a2K*) + Ag - agK*),

Aa(t) = 2(N, — Np,) — {Ar-en +A(t+7)- s+ A (—ail; —en)
T s (—ar* D)+ 26 -arll),

As(t) = —{X2-er+ As- (—aiN;) + As - (—ai Ny —er) + X - a1 N,y },

A6 (t) = —{Xs-enr+ A di+ A5 di + X6 - (—d] —en:1)},

A7(t) = —{X2 - (—aal*) + A3 - (—a2(N : I)*) + A7 - (—ao(N : I)* — asl™)
+ Ag a3l + Ag-az(NV: I)*},

Mg(t) = —{da ds+Ar-(dz+72) +Ag - (—d3 —12)},

Ao(t)=~{A1 T+ A3 do+ A7 (d2+71)+ Ao+ (—d2 —71)}

where optimal control terms are

1
aj = 5{()\1 + A2 = A)N* - I" + (A + As — Ag) N, ..I;:}’

4 ~%{(A1 20 = 2a)(N D) + (g + 25— o) (Nt 1)").

Remark 1. Since the equation (3.1) satisfies the conditions (i)—(ii) in theorem
2.2, the optimal control vectors and the bounded solutions of the optimal system
for (3.1) are unique for a sufficiently small 7.

Remark 2. Studying numerical schemes for solving the optimal system and
applying these results to specific biological systems are future studies.
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