• Title/Summary/Keyword: Electrical Resistivity & conductivity

Search Result 314, Processing Time 0.028 seconds

Electrical and Magnetic Properties of BiFeO3 Multiferroic Ceramics

  • Roy, M.;Jangid, Sumit;Barbar, Shiv Kumar;Dave, Praniti
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.62-65
    • /
    • 2009
  • The multiferroic $BiFeO_3$ has been investigated extensively in both thin film and ceramic form. However, the synthesis of a perfect sample with high resistivity is a prerequisite for examining its properties. This paper reports the synthesis of multiferroic $BiFeO_3$ along with its structural, electrical and magnetic properties in ceramic form. Polycrystalline ceramic samples of $BiFeO_3$ were synthesized by solid-state reaction using high purity oxides and carbonates. The formation of a single-phase compound was confirmed by x-ray diffraction and its lattice parameters were determined using a standard computer program. The microstructural studies and density measurement confirmed that the prepared samples were sufficiently dense for an examination of its electrical and magnetic properties. The dc electrical conductivity studies show that the sample was resistive with an activation energy of ${\sim}0.81\;eV$. The magnetization measurement showed a linear ($M{\sim}H$) curve indicating antiferromagnetic characteristics.

Preparation and applications of electrically conducting fabrics

  • Lee, Jun-Young;Jinsoo Joo;Lim, Jeong-Ok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.25-26
    • /
    • 2003
  • Electrically conducting polymers such as polypyrrole(PPy) or poly(3,4-ethylene dioxythiophene)(PEDOT) were sequentially polymerized chemically and electrochemically on various kinds of woven fabrics, giving rise to the fabrics with high electrical conductivity. The specific volume resistivity of the fabric prepared in this study was extremely low as 0.2 $\Omega$-cm. We figured out the electrically conducting fabrics were practically useful for many applications such as an EMI shielding material, a flexible surface heating element or a strain sensor for large deformation.

  • PDF

Effects of Plasma Pretreatment of the Cu Seed Layer on Cu Electroplating (Cu seed layer 표면의 플라즈마 전처리가 Cu 전기도금 공정에 미치는 효과에 관한 연구)

  • O, Jun-Hwan;Lee, Seong-Uk;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.802-809
    • /
    • 2001
  • Electroplating is an attractive alternative deposition method for copper with the need for a conformal and conductive seed layer In addition, the Cu seed layer should be highly pure so as not to compromise the effective resistivity of the filled copper interconnect structure. This seed layer requires low electrical resistivity, low levels of impurities, smooth interface, good adhesion to the barrier metal and low thickness concurrent with coherence for ensuring void-free fill. The electrical conductivity of the surface plays an important role in formation of initial Cu nuclei, Cu nucleation is much easier on the substrate with higher electrical conductivities. It is also known that the nucleation processes of Cu are very sensitive to surface condition. In this study, copper seed layers deposited by magnetron sputtering onto a tantalum nitride barrier layer were used for electroplating copper in the forward pulsed mode. Prior to electroplating a copper film, the Cu seed layer was cleaned by plasma H$_2$ and $N_2$. In the plasma treatment exposure tome was varied from 1 to 20 min and plasma power from 20 to 140W. Effects of plasma pretreatment to Cu seed/Tantalum nitride (TaN)/borophosphosilicate glass (BPSG) samples on electroplating of copper (Cu) films were investigated.

  • PDF

Electrical Properties of CNT and Carbon Fiber Filled Hybrid Composites Based on PA66

  • Lee, Minji;Park, Se-Ho;Jhee, Kwang-Hwan;Kye, Hyoungsan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.65-71
    • /
    • 2021
  • In recent times, the demand for electronic devices has increased because of advancements in the electronics industry. Consequently, research on shielding against electromagnetic interference (EMI) from electronic devices has also progressed significantly. In particular, research on imparting electrical conductivity to plastic has seen substantial progress. In this study, the effect of hybrid fillers comprising carbon fiber (CF) and carbon nanotubes (CNTs) on the electrical properties of polyamide 66 (PA66) composites was investigated. PA66 composites were prepared using a BUSS Co-Kneader single-screw extruder. EMI shielding effectiveness (SE) increased with the increasing addition of unsized CF (UCF), sized CF (SCF), and CNTs. For the PA66/SCF/CNT hybrid filler composites, EMI SE significantly increased with the increase in SCF content. Finally, the hybrid filler comprising SCF and CNTs may have a synergistic effect on the EMI SE and surface resistivity of PA66/SCF/CNT composites.

Patch-type large strain sensor using elastomeric composite filled with carbon nanofibers

  • Yasuoka, Tetsuo;Shimamura, Yoshinobu;Todoroki, Akira
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.146-151
    • /
    • 2013
  • Carbon nanofibers (CNFs) are electrically conductive. When CNFs are used as fillers in resin, this electrical conductivity can be yielded without adversely affecting the mechanical properties of the resin. When an elastomer is adopted as the resin, a conductive elastomer can then be produced. Due to its flexibility and conductive properties, a large strain sensor based on changes in resistivity may be produced, for strain sensing in flexible structures. In this study, a patch-type large strain sensor using resistivity change in a CNF/elastomer composite was proposed. The measurement limits of the sensor were investigated experimentally, and the limit was found to be 40%, which greatly exceeded the limits of conventional metal-foiled strain gages. Also, the proposed CNF/elastomer large strain sensor can be used to measure flexible materials, while conventional strain gages cannot be used to measure such strains.

Electrical Conductivity in oxide glasses subjected to a sodium silver ion-exchange treatment (산화물유리에서의 $Na^{+}$이온과 $Ag^{+}$이온 교환에 따른 전기전도도 변화에 관한 연구)

  • 한준수;강원호;이효경
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.100-105
    • /
    • 1995
  • Bulk glasses in the system $Na_2O$-CaO-$Al_2O_3$-$B_2O_3$-$SiO_2$ containing 20 to 30 mol% sod-ium hav been subjected to a sodium silver ion-exchange reaction for 0, 24, 36, 48 jr were analysed by electrical characterization Ion-exchanged glasses exhibit resistivity and activation energy values lower than those of the untreated ones. The electrical conductivity increase with sodium content and ion-exchanged time. In this experiment the electrical conductivity exhibit a maximum value of 1.78${\times}$10$^{-4}$S/cm at $200^{\circ}C$ which contains 30 mol% sodium and subjects ion-exchange reaction for 48hr.

  • PDF

Characteristics of Ti Thin films and Application as a Working Electrode in TCO-Less Dye-Sensitized Solar Cells

  • Joo, Yong Hwan;Kim, Nam-Hoon;Park, Yong Seob
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.93-96
    • /
    • 2017
  • The structural, electrical and optical properties of Ti thin films fabricated by dual magnetron sputtering were investigated under various film thicknesses. The fabricated Ti thin films exhibited uniform surfaces, crystallinity, various grain sizes, and with various film thicknesses. Also, the crystallinity and grain size of the Ti thin films increased with the increase of film thickness. The electrical properties of Ti thin films improved with the increase of film thickness. The results showed that the performance of TCO-less DSSC critically depended on the film thickness of the Ti working electrodes, due to the conductivity of Ti thin film. However, the maximum conversion efficiency of TCO-less DSSC was exhibited at the condition of 100 nm thickness due to the surface scattering of photons caused by the variation of grain size.

Electrical properties of sintered $HoSi_2$ ($HoSi_2$ 소결체의 전기적 특성 연구)

  • Lee, Woo-Sun;Oh, Guem-Kon;Kim, Hyung-Gon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1396-1398
    • /
    • 2001
  • The $HoSi_2$ compounds prepared by codeposition of Si and Ho, and $HoSi_2$ by sintering method were investigated electrical and Hall effect. The crystal structure of samples showed a orthorhombic structure, and lattices constant is a=9.8545 $\AA$, b=7.7935 $\AA$, c=7.8071 $\AA$. Hall effect shows a n-type conductivity in the sintered $HoSi_2$. The electrical resistivity values was 1.608${\Omega}cm^{-1}$ and carrier mobility was $6.9{\times}10^1cm^2/V{\cdot}sec$ at low room temperature.

  • PDF

The effects of annealing of the ATO films prepared by RF magnetron sputtering (RF 마그네트론 스퍼터를 이용한 ATO 박막의 열처리 효과)

  • Park, Sei-Yong;Lee, Sung-Uk;Park, Mi-Ju;Kim, Young-Ryeol;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.270-271
    • /
    • 2008
  • Antimony (6 wt%) doped tin oxide (ATO) films to improve conductivity were deposited on 7059 coming glass by RF magnetron sputtering method for application to transparent electrodes. The ATO film was deposited at a working pressure of 5 mTorr and RF power of 175 W. We investigated the effects of the post-annealing temperature on structural, electrical and optical properties of the ATO films. The films were annealed at temperatures ranging from $300^{\circ}C$ to $600^{\circ}C$ in step of $100^{\circ}C$ using RTA equipment in vacuum ambient. X-ray diffraction (XRD) measurements showed the ATO films to be crystallized with a strong (101) preferred orientation as the annealing temperature increased. Electrical resistivity decreased significantly with annealing temperatures up to $600^{\circ}C$. ATO film annealed at temperature of $600^{\circ}C$ showed the lowest resistivity of $5.6\times10^{-3}\Omega$-cm. Optical transmittance increased significantly with annealing temperatures up to $600^{\circ}C$. The highest transmittance was 90.8 % in the visible range from 400 to 800 nm.

  • PDF

Improvement of Conductive Micro-pattern Fabrication using a LIFT Process (레이저 직접묘화법을 이용한 미세패턴 전도성 향상에 관한 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.475-480
    • /
    • 2017
  • In this paper, the conductivity of the fine pattern is improved in the insulating substrate by laser-induced forward transfer (LIFT) process. The high laser beam energy generated in conventional laser induced deposition processes induces problems such as low deposition density and oxidation of micro-patterns. These problems were improved by using a polymer coating layer for improved deposition accuracy and conductivity. Chromium and copper were used to deposit micro-patterns on silicon wafers. A multi-pulse laser beam was irradiated on a metal thin film to form a seed layer on an insulating substrate(SiO2) and electroless plating was applied on the seed layer to form a micro-pattern and structure. Irradiating the laser beam with multiple scanning method revealed that the energy of the laser beam improved the deposition density and the surface quality of the deposition layer and that the electric conductivity can be used as the microelectrode pattern. Measuring the resistivity after depositing the microelectrode by using the laser direct drawing method and electroless plating indicated that the resistivity of the microelectrode pattern was $6.4{\Omega}$, the resistance after plating was $2.6{\Omega}$, and the surface texture of the microelectrode pattern was uniformly deposited. Because the surface texture was uniform and densely deposited, the electrical conductivity was improved about three fold.