• Title/Summary/Keyword: Electrical Noise

Search Result 3,620, Processing Time 0.033 seconds

A method to reject noise signals in partial discharge signals of turbine generator (터빈 발전기의 부분방전 신호 중 노이즈 제거 방법)

  • Park, Y.H.;Park, P.G.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.240-242
    • /
    • 2005
  • It is well known that the PD (Partial Discharge) signals are generated if insulators have some defects such as voids in electrical facility and various PD detection methods are developed for preventing electrical troubles. So, an interest for the PD signals is higher and higher according to the high concern for the defects detection method of the aging electrical facility. When the equipment to detect PD signals installed at site and it works, a lot of noises flow in the equipment from surrounding situation and it will be mixed with original PD waveform. So we can not get the desired PD waveform. Therefore, there are many trial to reject or suppress the noise from the PD signals from long times ago. The greater of them used the hardware such as bridge circuits and frequency filters to suppress the noise. This paper proposed a novel noise rejection method in acquired data from PD detection equipment. The noise has the irregular phase and higher signal level than real PD, and noise decision is performed after inspection of pulse distribution in ${\Phi}$-q-n graph of acquired data from PD detection equipments. By experimental results on high voltage electric equipments, it is shown that proposed method has good performance. It is expected that this noise rejection technology is useful in numeric calculation and trend management of PD level.

  • PDF

Characteristics of Real-time Implementation using the Advanced System Controller in ANC Systems (개선된 시스템 제어기를 사용한 능동소음제어의 실시간 구현 특성)

  • Moon, Hak-ryong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • Active noise control (ANC) is a method of cancelling a noise signal in an acoustic cavity by generating an appropriate anti-noise signal via canceling loudspeakers. The continuous progress of ANC involves the development of improved adaptive signal processing algorithms, transducers, and DSP hardware. In this paper, the convergence behavior and the stability of the FxLMS algorithm in ANC systems with real-time implementation is proposed. Specially, The advanced DSP H/W with dual core(DSP+ARM) and API(application programming interface) S/W programming was developed to improve the real-time implementation performance under the FxLMS algorithms of input noise such as road noise environment. The experimental results are found to be in good agreement with the theoretical predictions.

Detector Manufacture about Leaky Noise Generated from Faulty Power Equipment (불량 전력기기에서 발생하는 누설 노이즈 검출장치 제작)

  • Lee, Jong-Chan;Jeon, Yun-Jeon;Park, Ju-Hoo;Kim, Ki-Dae;Park, Hyung-Jun;Yoon, Yang-Woong;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1945-1947
    • /
    • 2000
  • In this paper, we manufactured the detector which is detecting the periodical distribution of arrival time about pulsed leaky noise. The frequency range were analyzed optimally pulsed leaky noise in detector design. With results we can make the detector for leaky noise from the bad insulator.

  • PDF

Performance Improvement of the Active Noise Control System Using RCMAC and PSO Method (RCMAC 및 PSO 기법을 이용한 능동 소음제어 시스템 성능 개선)

  • Han, Seong-Ik;Shin, Jong-Min;Kim, Sae-Han;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1900-1907
    • /
    • 2010
  • In this paper, a recurrent cerebellar modulation articulation control with praticle swarm optimization (PSO) method has been investigated for improvement of noise attenuation performance in active noise control system. For narrow band noise, FXLMS and RCMAC has a partial satisfactory noise attenuation. However, noise attenuation performance is poor for broad band noise and nonlinear path since it has linear filter structure. To improve this problem, a RCMAC with PSO is proposed and it is shown that satisfactory noise attenuation performance is obtained by some simulations in duct system using harmonic motor noise and KTX cabin noise as a noise source.

A Study on the Active Noise Control System for Road Noise Reduction Implementation and Characterization of Directional and Non-directional Speaker (도로 소음 저감용 능동소음 제어시스템의 구현과 지향성 및 무지향성 스피커의 특성 고찰)

  • Moon, Hak-Ryong;Lim, You-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.192-197
    • /
    • 2013
  • Road traffic noise barriers being used to reduce the noise, but the city surroundings inhibition, ecosystem disturbance, and it is difficult to maintain. Can enhance or complement the existing noise barrier performance, so that it is necessary to develop an electronic noise-reduction system In this paper, we proposed an electronic road noise reduction devices to reduce road noise for a DSP-based signal processing and analog signal input-output controller. In order to verify the control performance, we performed noise reduction experimentation of ANC by filtered-X LMS algorithm and traffic noise signal injection. The controller is equipped with noise reduction algorithms were tested on the characteristics of directional and omnidirectional speaker.

An Experimental Analysis of the Structure-Borne Noise Reduction on Electrical Equipment (전자장비 구조기인소음 저감방안의 실험적 검토)

  • Lee, Seong-Hyun;Seo, Yun-Ho;Kim, Won-Hyoung;Choi, Young-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.111-117
    • /
    • 2014
  • In this paper, the structure-borne noise reduction on electrical equipment is discussed by the experimental analysis. The water cooling system in electrical equipment is the only noise source, so the mock-up was made to measure noise characteristics. Effects of power supply, stiffness, isolation of noise source and natural frequency determined by resilient mounts are investigated using the mock-up. The console prototype was made referring to noise reduction technique by the mock-up. The structure-borne noise level of a console prototype was measured and some experiments to reduce the noise was undertaken. The $1^{st}$ and $4^{th}$ harmonics of operating frequency of cooling fans causes highest structure-borne noise levels. The control of operating speeds of several DC cooling fan groups was tried. Also types and installation layouts of resilient mounts were investigated. To reduce structure-borne noise, followings can be applied: increase of stiffness, isolation of source, decrease of natural frequency of mount, combination of operating speed of fans, selection of mounts, and so on.

Investigation of Thermal Noise Factor in Nanoscale MOSFETs

  • Jeon, Jong-Wook;Park, Byung-Gook;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.225-231
    • /
    • 2010
  • In this paper, we investigate the channel thermal noise in nanoscale MOSFETs. Simple analytical model of thermal noise factor in nanoscale MOSFETs is presented and it is verified with accurately measured noise data. The noise factor is expressed in terms of the channel conductance and the electric field in the gradual channel region. The proposed noise model can predict the channel thermal noise behavior in all operating bias regions from the long-channel to nanoscale MOSFETs. From the measurement results, we observed that the thermal noise model for the long-channel MOSFETs does not always underestimate the short-channel thermal noise.

The Audible Noise Prediction of the Substation due to Transformer Audible Noise and the Field Application of the Low Noise Transformer (변압기 소음에 의한 변전소 소음예측 및 저소음 변압기 현장적용)

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Kim, Gyeong-Tak;Woo, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1382-1387
    • /
    • 2010
  • Recently, there has been a growing interest in the environmental conservation. Accordingly, problems related to the audible noise of transformers have became more frequent. Therefore, it is urgent to find a fundamental solution about the audible noises in the substations. This paper described a sort of fundamental solution to solve the noise problem. As a fundamental solution, we suggested the proper audible noise level of transformers through noise prediction in the substation construction phase. And we applied the low noise transformers which have the predicted noise level. As the result, we are able to satisfy the noise regulation through measuring 43.6dBA at the boundary of substation. It is confirmed that the average error rate of prediction was within 3 percent.

A Study on Standards of Transformer Noise Level for Outdoor Substation (옥외 변전소 변압기의 소음레벨 기준에 대한 연구)

  • Koo, Kyo-Sun;Kweon, Dong-Jin;Kwak, Ju-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2213-2219
    • /
    • 2008
  • Customer complaints on noise from the power transformer have been increased because of their concerns on environment. In order to solve fundamental noise problem of the transformer, KEPCO and domestic transformer manufacturers are developing 55 dBA class low noise transformers. To check accordance of the noise abatement law, we study relation between transformer noise level and substation border noise level. We present 'noise level of the substation border' under operating conditions and transformer noise level change. We also present an appropriate noise level of the transformer that satisfy the noise abatement law for outdoor substations.

Design a Robust Controller to Attenuate Residual Noise in a Headset (헤드셋 내부의 소음 감쇄를 위한 강인 제어기의 설계)

  • Chung, Tae-Jin;Park, Young-Sik;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.555-557
    • /
    • 1999
  • This paper implements an active noise controller in a headset by solving Robust $H_{\infty}$ control problem. In the $H_{\infty}$ control framework, we can suppose the noise in a headset as disturbance and the noise control problem is cast on the well-known $H_{\infty}$ regulation problem. By representing the system as LFT(Linear Fractional Transformaion) form, the controller is obtained using D-K iteraitons. The designed controller was implemented with operational amplifiers and it produced the desired noise reduction performance.

  • PDF