• Title/Summary/Keyword: Electrical Integration and Function Test

Search Result 11, Processing Time 0.034 seconds

A Series of Process of Electrical Integration and Function Test for Flight Model of STEP Cube Lab. (큐브위성 STEP Cube Lab. 비행모델의 전자조립 및 기능시험 과정)

  • Jeong, Hyeon-Mo;Chae, Bong-Geon;Han, Sang-Hyuck;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.814-824
    • /
    • 2016
  • The mission objective of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) classified as a pico-class satellite is to find space core technologies researched at domestic industry or university and to verify these technologies on mission orbit. To implement this objective, system level electrical integration and function test (EIT) by using developed flight software were performed in compliance with system requirements. And the effectiveness of the flight model (FM) was verified through launch and thermal vacuum test at acceptance level. This paper will introduce a series of process of electrical function tests for FM EIT, launch and thermal vacuum tests.

The Effects of Functional Electrical Stimulation on Hand Function of Children With Spastic Cerebral Palsy (기능적 전기자극이 경직성 뇌성마비 아동의 상지 기능에 미치는 영향)

  • Bang, Hyun-Soo;Kim, Dong-Hyun
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • Objective: This study aims investigating the effects of functional electrical stimulation (FES) on hand function of children with spastic cerebral palsy. Methods: The participants of this study are 20 children with spastic cerebral palsy aged between 11 to 16 years old. All the subjects underwent 24 sessions of FES during 8 weeks. Each FES was 20 minutes per session, and 3 sessions of FES were provided in a week. Measurements used to assess hand function are Jebsen Hand Function Test, Modified Ashworth Scale and 3D Motion Analysis. After establishment of the baseline for each client by all the measurements, reevaluations were performed every 2 weeks using Jebsen Hand Function Test and the Modified Ashworth Scale. The 3D Motion Analysis was performed only before- and after the 8 weeks of FES treatment. Results: After the FES, there was significant decrease in completed time for the all 6 subtasks of Jebsen Hand Function Test were (p<.05) and also significant decrease in spasticity score of Modified Ashworth Scale as well (p<.05). 3D Motion Analysis showed that the hand tapping and the finger tapping has been significantly improved (p<.05), and the pronation-supination movement of lower arm has been significantly improved as well. Conclusion: Based on the results of this study, it is evidenced that functional electrical stimulation is effective treatment for hand function of children with cerebral palsy. For future research, it is recommended to examine various protocols of FES including impact of long-term application.

A New Unified Scheme Computing the Quadrature Weights, Integration and Differentiation Matrix for the Spectral Method

  • Kim, Chang-Joo;Park, Joon-Goo;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1188-1200
    • /
    • 2015
  • A unified numerical method for computing the quadrature weights, integration matrix, and differentiation matrix is newly developed in this study. For this purpose, a spline-like interpolation using piecewise continuous polynomials is converted into a global spline interpolation formula, with which the quadrature formulas can be derived from integration and differentiation of the transformed function in an exact manner. To prove the usefulness of the suggested approach, both the Lagrange and tension spline interpolations are represented in exactly the same form as global spline interpolation. The applicability of the proposed method on arbitrary nodes is illustrated using two different sets of nodes. A series of validations using three test functions is conducted to show the flexibility in selecting computational nodes with the present method.

Design of a Monitoring System for a GPS/INS Integration System (GPS/INS항법 시스템용 모니터링 시스템의 설계)

  • Lee, See-Ho;Hwang, Dong-Hwan;Moon, Sung-Wook;Kim, Se-Hwan;Lee, Sang-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.948-950
    • /
    • 1999
  • In this paper, a monitoring system is desigend for a GPS/INS integration system. The function of the monitoring system is to acquire real-time data from system and displayed them. The monitoring system supervises the operation of navigation system. Visual C++ was used in the implementation. The performance of the monitoring system was verified through a real-time test for a GPS/INS Integration system which is composed of a GPS Receiver. IMU(Inertial Measurement Unit), NCU (Navigation Computer Unit)

  • PDF

Design on Flight-Critical Function of Mission Computer for KUH (한국형기동헬기 임무컴퓨터 비행필수기능 설계)

  • Yu, Yeon-Woon;Kim, Tae-Yeol;Jang, Won-Hong;Kim, Sung-Woo;Lim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • Avionics system tends to be designed to have the integrated architecture, and it is getting difficult and complex to verify the flight-critical function because of sophisticated structure. In Korean Utility Helicopter, mission computer acts as the MUX Bus Controller to handle the data from both communication, identification, mission/display and survivability equipment inside Mission Equipment Package and aircraft subsystems such as fuel system and electrical system while it is interfacing with Automatic Flight Control System and Full-Authority Digital Engine Control via ARINC-429 bus. The Flight Displays which is classified as flight-critical function in aircraft is implemented on Primary Flight Display after mission computer processes data from AFCS in order to generate graphics. This paper defines the flight-critical function implemented in mission computer for KUH, and presents the static and dynamic test procedures which is performed on System Integration Laboratory along with Playback Recorder prior to flight test.

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.

Design of Radio Frequency Test Set for TC&R RF Subsystem Verification of LEO and GEO Satellites (저궤도 및 정지궤도위성의 TC&R RF 서브시스템 검증을 위한 RF 시험 장비 설계)

  • Cho, Seung-Won;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.674-682
    • /
    • 2014
  • Radio Frequency Test Set (RFTS) is essential to verify Telemetry, Command & Ranging (TC&R) RF subsystem of both Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) satellite during Assembly Integration & Test (AI&T). The existing RFTS was specialized for each project and needed to be modified for each new satellite. The new design enables RFTS to be used in various projects. The hardware and software was designed considering this and therefore it could be directly used in other projects within a similar test period without modification or inconvenience. It will be also easily controlled, modified, and managed through the extension in modularization according to each function and the use of COTS (commercial on-the-self) and this will improve system reliability. A more reliable RF test measurement is also provided in this new RFTS by using an accurate reference clock signal.

Functional Electric Stimulation-assisted Biofeedback Therapy System for Chronic Hemiplegic Upper Extremity Function

  • Kim, Yeung Ki;Song, Jun Chan;Choi, Jae Won;Kim, Jang Hwan;Hwang, Yoon Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.6
    • /
    • pp.409-413
    • /
    • 2012
  • Purpose: Rehabilitative devices are used to enhance sensorimotor training protocols, for improvement of motor function in the hemiplegic limb of patients who have suffered a stroke. Sensorimotor integration feedback systems, included with these devices, are very good therapeutic frameworks. We applied this approach using electrical stimulation in stroke patients and examined whether a functional electric stimulation-assisted biofeedback therapy system could improve function of the upper extremity in chronic hemiplegia. Methods: A prototype biofeedback system was used by six subjects to perform a set of tasks with their affected upper extremity during a 30-minute session for 20 consecutive working days. When needed for a grasping or releasing movement of objects, the functional electrical stimulation (FES) stimulated the wrist and finger flexor or extensor and assisted the patients in grasping or releasing the objects. Kinematic data provided by the biofeedback system were acquired. In addition, clinical performance scales and activity of daily living skills were evaluated before and after application of a prototype biofeedback system. Results: Our findings revealed statistically significant gradual improvement in patients with stroke, in terms of kinematic and clinical performance during the treatment sessions, in terms of manual function test and the Purdue pegboard. However, no significant difference of the motor activity log was found. Conclusion: Hemiplegic upper extremity function of a small group of patients with chronic hemiparesis was improved through two weeks of training using the FES-assisted biofeedback system. Further research into the use of biofeedback systems for long-term clinical improvement will be needed.

Electro-Magnetic Field Computation Using the Natural Element Method (Natural Element Method를 이용한 전자장 해석)

  • Kim, H.K.;Jung, J.K.;Oh, Y.H.;Park, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.59-61
    • /
    • 2003
  • The natural element method is a kind of meshless Galerkin method. The shape function is derived from the natural neighbor coordinates interpolation scheme. Natural neighbor shape functions are $C^0$ everywhere, except the nodes where they are $C^0$. The numerical integration is carried out using the Delaunay triangles as the background cells. The method is applied to the test problems and simulation results show that the natural element method can give accurate solutions for the electromagnetic field problems.

  • PDF

Prediction of Etch Profile Uniformity Using Wavelet and Neural Network

  • Park, Won-Sun;Lim, Myo-Taeg;Kim, Byungwhan
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.256-262
    • /
    • 2004
  • Conventionally, profile non-uniformity has been characterized by relying on approximated profile with angle or anisotropy. In this study, a new non-uniformity model for etch profile is presented by applying a discrete wavelet to the image obtained from a scanning electron microscopy (SEM). Prediction models for wavelet-transformed data are then constructed using a back-propagation neural network. The proposed method was applied to the data collected from the etching of tungsten material. Additionally, 7 experiments were conducted to obtain test data. Model performance was evaluated in terms of the average prediction accuracy (APA) and the best prediction accuracy (BPA). To take into account randomness in initial weights, two hundred models were generated for a given set of training factors. Behaviors of the APA and BPA were investigated as a function of training factors, including training tolerance, hidden neuron, initial weight distribution, and two slopes for bipolar sig-moid and linear function. For all variations in training factors, the APA was not consistent with the BPA. The prediction accuracy was optimized using three approaches, the best model based approach, the average model based approach and the combined model based approach. Despite the largest APA of the first approach, its BPA was smallest compared to the other two approaches.