• Title/Summary/Keyword: Electrical Field Optimization

Search Result 227, Processing Time 0.029 seconds

Optimal Design of Field-Excitation Flux-Switching Synchronous Machine for ISG Application (계자권선형 12슬롯-10극 자속 역전식 동기 전동기의 최적 설계)

  • Koo, Bon-Kil;Jung, Il-Su;Nam, Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.23-24
    • /
    • 2013
  • In recent years, ISG (Integrated Starter and Generator) system receives a great attention for electric electrification of normal gasoline vehicle. As a cost-effect machine design, an ISG without a permanent magnet is considered. A 12slot-10pole field-excitation flux-switching synchronous machine (FEFSSM) is designed and analyzed via JMAG. The active parts such as the field excitation coil and armature coil are located on the stator. The rotor part consisting of single piece iron makes it more robust and suitable to apply for high speed motor drive system application coupled with reduction belt. The design target is the motor with a maximum torque of 40Nm, a maximum power of 10kW and a maximum speed of 14000 rpm. In this paper, design optimization method is proposed for high torque capability.

  • PDF

A Sensing System of the Halbach Array Permanent Magnet Spherical Motor Based on 3-D Hall Sensor

  • Li, Hongfeng;Liu, Wenjun;Li, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.352-361
    • /
    • 2018
  • This paper proposes a sensing system of the Halbach array permanent magnet spherical motor(PMSM). The rotor position can be obtained by solving three rotation angles, which revolves around 3 reference axes of the stator. With the development of 3-D hall sensor, the position identification problem of the Halbach array PMSM based on rotor magnetic field is studied in this paper. A nonlinear and serious coupling relationship between the rotation angles and the measured magnetic flux density is established on the basis of the rotation transformation theory and the magnetic field model. In order to get rid of the influence on position detection caused by the harmonics of rotor magnetic field and the stator coil magnetic field, a sensor location combination scheme is proposed. In order to solve the nonlinear equation fast and accurately, a new position solution algorithm which combines the merits of gradient projection and particle swarm optimization(PSO) is presented. Then the rotation angles are obtained and the rotor position is identified. The validity of the sensing system is verified through the simulation.

Design Sensitivity Analysis and Topology Optimization for Electromagnetic Force (전자기력에 대한 설계민감도 계산 및 위상 최적화)

  • Moon, Hee-Gon;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.708-710
    • /
    • 2003
  • This paper presents design sensitivity analysis for the electromagnetic force and torque obtained from Coulomb's virtual work method using the adjoint variable method. And virtual displacement field is calculated from a static structural analysis. Derived equations are verified by comparison with finite different method. And topology optimization for a c-core is given as a verification example.

  • PDF

The Optimal Design of Passive Shimming Elements for High Homogeneous Permanent Magnets Utilizing Sensitivity Analysis

  • Yao, Yingying;Choi, Yong-Kwon;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.461-465
    • /
    • 2006
  • This paper presents a useful and simple method to design the passive skimming system for homogeneous permanent magnets based on numerical optimization. To simulate the effects of manufacturing and assembling tolerances, the actual geometrical parameter of the magnet with a derivation is suggested. Then, the optimal design model oi a passive shim system is set up to correct the derivative of field homogeneity. The numbers, sizes and locations of the passive shims are optimized by the steepest descent algorithm combined with design sensitivity analysis. Two implementations show that the proposed method can achieve the required homogeneity of the field with the minimum quantity of ferromagnetics.

A Study on Electrical Characteristic Improvement & Design Parameters of Power MOSFET with Single Floating Island Structure (단일 Floating Island 구조 Power MOSFET의 전기적 특성 향상과 설계 파라미터에 관한 연구)

  • Cho, Yu Seup;Sung, Man Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.222-228
    • /
    • 2015
  • Power MOSFETs (metal oxide semiconductor field effect transistor) operate as energy control semiconductor switches. In order to reduce energy loss of the device, it is essential to increase its conductance. However, a trade-off relationship between the breakdown voltage and conductance of the device have been the critical difficulty to improve. In this paper, theoretical analysis of electrical benefits on single floating island power MOSFET is proposed. By the method, the optimization point has set defining the doping limit under single floating island structure. The numerical multiple 2.22 was obtained which indicates the doping limit of the original device, improving its ON state voltage drop by 45%.

Optimization of Double Gate Vertical Channel Tunneling Field Effect Transistor (DVTFET) with Dielectric Sidewall

  • WANG, XIANGYU;Cho, Wonhee;Baac, Hyoung Won;Seo, Dongsun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.192-198
    • /
    • 2017
  • In this paper, we propose a novel double gate vertical channel tunneling field effect transistor (DVTFET) with a dielectric sidewall and optimization characteristics. The dielectric sidewall is applied to the gate region to reduced ambipolar voltage ($V_{amb}$) and double gate structure is applied to improve on-current ($I_{ON}$) and subthreshold swing (SS). We discussed the fin width ($W_S$), body doping concentration, sidewall width ($W_{side}$), drain and gate underlap distance ($X_d$), source doping distance ($X_S$) and pocket doping length ($X_P$) of DVTFET. Each of device performance is investigated with various device parameter variations. To maximize device performance, we apply the optimum values obtained in the above discussion of a optimization simulation. The optimum results are steep SS of 32.6 mV/dec, high $I_{ON}$ of $1.2{\times}10^{-3}A/{\mu}m$ and low $V_{amb}$ of -2.0 V.

Design of the Shimming Coils for MRI Magnet (MRI 마그네트용 보정코일 설계)

  • Bae, Jun-Han;Go, Rak-Gil;Jin, Hong-Beom;Sim, Gi-Deok;Gwon, Yeong-Gil;Ryu, Gang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.587-591
    • /
    • 2001
  • This paper describes the general and efficient design method of an axial and a radial shim coils to correct field impurities of various harmonic orders in the imaging volume of Magnetic Resonance Imaging magnet. Shim coils are optimized by BCLSF subroutine of IMSL, which is the well-known commercial package for optimization, aiming at maximizing the magnitude of the desired field component as well as minimizing other field components. In order to evaluate their effect, the developed method was applied to the MRI magnet constructed in KERI.

  • PDF

Robust design using fuzzy system

  • Ahn, Taechon;Lee, Sangyoun;Ryu, Younbum;Oh, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.40-43
    • /
    • 1996
  • To design high quality products at low cost is one of very important task for engineers Design optimization for performances can be one solution in this task. This is robust design which has been proved effectively in many field of engineering design. In this paper, the concept of robust design is introduced and combined to fuzzy optimization and nonsingleton fuzzy logic system. The optimum parameter set points were obtained by the fuzzy optimization method and nonsingleton fuzzy logic system. These methods are applied to a filter circuit, a part of the audio circuit of mobile radio transceiver. The results are compared each other.

  • PDF

Shape Optimization of Electromagnetic System using Level Set Method (전자기 시스템에서 Level Set Method를 이용한 최적화)

  • Kim, Young-Sun;Choi, Hong-Soon;Park, Il-Han;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.623-624
    • /
    • 2008
  • We present a level set method for numerical shape optimization of electromagnetic systems. The level set method does not only lead to efficient computational schemes, but also is able to handle topological changes such as merging, splitting and even disappearing of connected components. The velocity field on boundaries is obtained by a shape derivative of continuum sensitivity analysis using the material derivative concept and an adjoint variable technique. Two numerical results of dielectric optimization between electrodes showed that the level set method is feasible and effective in solving shape optimization problems of electromagnetic systems.

  • PDF

Traditional Software Development for WLAN Propagation Model

  • Ibrahim Anwar Hassan;Ismail Mahamod;Jumari Kasmiran;Kiong Tiong Sieh
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.123-128
    • /
    • 2007
  • SPWPM traditional software development is surveyed and essential problems are investigated on the basis of system wireless link considerations. This paper presents the current state software planning tools for wireless LAN link optimization. The software directory is based on combination of MatLab and MapInfo software and measurement which gives the best grouping parameters to build up the software development. Among the requirements assumed, the WLAN site selections must be Line-of-sight (LOS) or near line of sight (NLOS) field strength prediction for either point to point or point to multi points. The results obtainable the out put of the program include two-dimensional (2D) and three dimensional (3D) plots for creating the link; design parameters through GUI representing the height and location for each antenna is depending on K-factor of the area and transmit antenna location.