• Title/Summary/Keyword: Electrical Engineering Design

Search Result 7,363, Processing Time 0.035 seconds

Topology Design of BLDC Motor for Cogging Torque Reduction and Characteristic Analysis (코깅토크 저감을 위한 BLDC 전동기의 형상 설계 및 특성 분석)

  • Seo, Kyung-Sik;Jung, Sang-Yong;Lee, Cheol-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1519-1525
    • /
    • 2014
  • This paper presents the shape design for reducing cogging torque and characteristic analysis in Brushless DC (BLDC) motor. In this BLDC motor, ${\Delta}$(delta)-winding is applied, and in order to obtain the $60^{\circ}$ trapezoidal phase back-EMF waveform, permanent magnet shape design is carried out. And then, a method on specifying design parameters to effectively reduce cogging torque is developed. back-EMF, input voltage and input current which are analyzed by the Finite Element Method (FEM) are validated by experimental results. Also, efficiency calculations based on analysis and experimental results are performed and analyzed.

LDM Design for Reduction of Mover Mass Using RSM(Response Surface Methodology) (RSM(Response Surface Methodology)를 적용한 선형직류전동기(LDM)의 가동자 중량 저감 최적화 설계)

  • Nam, Hyuk;Kim, Young-Kyoun;Chang, Ki-Chan;Hong, Jung-Pyo;Park, Jae-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.964-966
    • /
    • 2002
  • This paper presents a magnet circuit design procedure to reduce mover mass of the moving coil type linear direct motor (LDM). The procedure of optimization is based on the response surface methodology (RSM) and Sequential Quadratic Problem (SQP). This procedure of optimization is verified by the comparison of the result of the initial design between the result of the optimum design.

  • PDF

Optimal Rotor Structure Design of Interior Permanent Magnet Synchronous Machine based on Efficient Genetic Algorithm Using Kriging Model

  • Woo, Dong-Kyun;Kim, Il-Woo;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.530-537
    • /
    • 2012
  • In the recent past, genetic algorithm (GA) and evolutionary optimization scheme have become increasingly popular for the design of electromagnetic (EM) devices. However, the conventional GA suffers from computational drawback and parameter dependency when applied to a computationally expensive problem, such as practical EM optimization design. To overcome these issues, a hybrid optimization scheme using GA in conjunction with Kriging is proposed. The algorithm is validated by using two mathematical problems and by optimizing rotor structure of interior permanent magnet synchronous machine.

Optimal Design of Ferromagnetic Pole Pieces for Transmission Torque Ripple Reduction in a Magnetic-Geared Machine

  • Kim, Sung-Jin;Park, Eui-Jong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1628-1633
    • /
    • 2016
  • This paper derives an effective shape of the ferromagnetic pole pieces (low-speed rotor) for the reduction of transmission torque ripple in a magnetic-geared machine based on a Box-Behnken design (BBD). In particular, using a non-linear finite element method (FEM) based on 2-D numerical analysis, we conduct a numerical investigation and analysis between independent variables (selected by the BBD) and reaction variables. In addition, we derive a regression equation for reaction variables according to the independent variables by using multiple regression analysis and analysis of variance (ANOVA). We assess the validity of the optimized design by comparing characteristics of the optimized model derived from a response surface analysis and an initial model.

A Fully Optimized Electrowinning Cell for Achieving a Uniform Current Distribution at Electrodes Utilizing Sampling-Based Sensitivity Approach

  • Choi, Nak-Sun;Kim, Dong-Wook;Cho, Jeonghun;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.641-646
    • /
    • 2015
  • In this paper, a zinc electrowinning cell is fully optimized to achieve a uniform current distribution at electrode surfaces. To effectively deal with an electromagnetically coupled problem with multi-dimensional design variables, a sampling-based sensitivity approach is combined with a highly tuned multiphysics simulation model. The model involves the interrelation between electrochemical reactions and electromagnetic phenomena so as to predict accurate current distributions in the electrowinning cell. In the sampling-based sensitivity approach, Kriging-based surrogate models are generated in a local window, and accordingly their sensitivity values are extracted. Such unique design strategy facilitates optimizing very complicated multiphysics and multi-dimensional design problems. Finally, ten design variables deciding the electrolytic cell structure are optimized, and then the uniformity of current distribution in the optimized cell is examined through the comparison with existing cell designs.

High-Performance Voltage Controller Design Based on Capacitor Current Control Model for Stand-alone Inverters

  • Byen, Byeng-Joo;Choe, Jung-Muk;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1635-1645
    • /
    • 2015
  • This study proposes high-performance voltage controller design that employs a capacitor current control model for single-phase stand-alone inverters. The single-phase stand-alone inverter is analyzed via modeling, which is then used to design the controller. A design methodology is proposed to maximize the bandwidth of the feedback controller. Subsequently, to compensate for the problems caused by the bandwidth limitations of the controller, an error transfer function that includes the feedback controller is derived, and the stability of the repetitive control scheme is evaluated using the error transfer function. The digital repetitive controller is then implemented. The simulation and experimental results show that the performance of the proposed controller is high in a 1.5 kW single-phase stand-alone inverter prototype.

Design and Analysis of a Permanent-Magnet-Assisted Switched Reluctance Motor

  • Hwang, Hongsik;Hur, Jin;Lee, Cheewoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2209-2217
    • /
    • 2014
  • A permanent-magnet-assisted switched reluctance motor (SRM) having small excitation poles, where phase coils are concentrically wound on the poles and thin permanent magnets are inserted inside the poles, is proposed in this paper. The insertion of permanent magnets into the stator excitation poles has a significant influence on positive torque improvement leading to a boost in efficiency. Three key design parameters such as the thickness of permanent magnets, space between two adjacent permanent magnets, and the width of stator excitation poles are determined during a design procedure in terms of the enhancement of positive torque. Step-by-step design modification and a comparison between the proposed permanent-magnet-assisted SRM and no-permanent-magnet SRM have been conducted by means of static torque comparison along with dynamic performance. The first prototype from steel laminations up to its physical assembly has been constructed.

Simplified Design and Optimization of Slotless Brushless DC Machine for Micro-Satellites Electro-Mechanical Batteries

  • Abdi, Babak;Bahrami, Hamid;Mirtalaei, S.M.M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.124-129
    • /
    • 2013
  • Electro-Mechanical Batteries have important advantages compared with chemical batteries, especially in Low Earth Orbit satellites applications. High speed, slotless, external rotor, brushless DC machines are proposed and used in these systems as Motor/Generator. A simplified analytic design method is given for this type of machines and, the optimization of machine in order to have maximum efficiency and minimum volume and weight are given in this paper. Particle swarm optimization (PSO) is used as the optimization algorithm and the finite element-based simulations are used to confirm the design and optimization process and show less than 6% error in parametric design.

Rotor Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 설계)

  • Park, Jung-Min;Kim, Sung-Il;Hong, Jung-Pyo;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.669-670
    • /
    • 2006
  • This paper deals with the optimum rotor design solution on torque ripple reduction for a SynRM with concentrated winding using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with finite element method (FEM)and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Comparisons are given with characteristics of a SynRM according to flux barrier number, flux barrier width variation, respectively.

  • PDF

Dynamic Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor by Parameter Variation (단상 유도형 동기전동기의 파라미터 변화에 따른 동특성 해석)

  • Oh, Se-Young;Jung, Dae-Sung;Lim, Seung-Bin;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.763-764
    • /
    • 2006
  • In this paper, optimized model was designed for the starting characteristic of the Single-Phase Line-Start Permanent Magnet Synchronous Motor by using the Design of Experiment. A field pole angle, thickness and distance from center axis of permanent magnet were selected as design factor. We executed the transient state characteristic analysis of 8 test models. The transient state characteristic analysis was executed by using the 2 dimensional Finite Element Method and the Time Difference Method. We checked the fact that the selected design factor affected starting characteristic of the Line-Start Permanent Magnet Synchronous Motor. Depend on this result we found the optimized design point by using the response optimization.

  • PDF