• Title/Summary/Keyword: Electrical Discharge Machining

Search Result 195, Processing Time 0.025 seconds

Influence of Debris in Micro Electrical Discharge Machining Processes (미세방전가공 중 발생하는 debris를 고려한 가공특성 연구)

  • Kook K.H.;Lee H.W.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1244-1247
    • /
    • 2005
  • The material removal mechanism of Electrical Discharge Machining (EDM) process has been studied for several decades. However, understanding of the material removal mechanism is still a difficult problem because the mechanism involves complicated physical phenomena including plasma. Especially, for a micro-EDM process, due to the influence of the debris that is generated during the machining process, quantitative modeling of EDM becomes more complex. To understand better the effects of the debris in the micro-EDM process experimentally, a new approach has been introduced in this study. Using a specially designed workpiece holder, the debris generated during the EDM with various process conditions has been collected. Then, using a simulated environment using micro-sized metal powders, the influence of the debris during the single EDM discharge has been observed. The effects of EDM process parameters on the debris size and product quality are discussed.

  • PDF

Micro Machining by EDM and ECM (방전 가공과 전해 가공을 이용한 미세 가공)

  • Jeon, Dong-Hun;Kim, Bo-Hyun;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.52-59
    • /
    • 2006
  • Micro electrical discharge machining (EDM) and micro electrochemical machining (ECM) were studied for the fabrication of micro structures. Micro EDM has been used to machine micro structures from metals. However, since the tool wear is inevitable during the machining, the tool wear is drawback for the precision machining. Micro ECM is also used for micro machining and produces better surface quality than that of micro EDM. Moreover, since tool electrodes are not worn out, micro ECM is suitable for the precision micro machining. However, the machining rate is lower than that of micro EDM. In this paper, therefore, the hybrid machining process which uses micro EDM as roughing and micro ECM as finishing is introduced. By using this hybrid machining, a hemisphere with $100\;{\mu}m$ radius was fabricated and the efficiency of the process was investigated experimentally.

Optimizing the Process Parameters of EDM on SCM440 Steel (SCM440강의 방전가공에서 공정변수의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2018
  • The objective of this research study is to investigate the optimal process parameters of electrical discharge machining (EDM) on SCM440 steel with copper as a tool electrode. The effect of various process parameters on machining performance is investigated in this study. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SCM440 steel. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The work material was ED machined with copper electrodes by varying the pulsed current, pulse on-time, voltage, servo speed and spark speed. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Mechanical Characteristics of Electrical Discharge Machined Product due to the Different Wire Electrode (와이어 종류에 따른 방전가공 부품의 기계적 특성)

  • 김종업;정순성;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.875-878
    • /
    • 1997
  • Electrical discharge machining is the method of using thermal energy by electrical discharge. Generally, if the material of workpiece has conductivity even though it is very hard material and complicated shape which are difficult to cut such as quenching steel, cemented carbide, diamond and conductive ceramics, the EDM is favorable one of possible machining processes. But, the process is necessarily required of finish cut and heat treatment because of slow cutting speed, no mirror surface, brittleness and crack due to the residual stress for manufactured goods.

  • PDF

Micromachining Using Hybrid of Laser Beam and Electrical Discharge Machining (레이저 빔 가공과 방전 가공을 이용한 복합 미세 가공)

  • Kim, San-Ha;Chung, Do-Kwan;Kim, Bo-Hyun;Oh, Kwang-Hwan;Jeong, Sung-Ho;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.108-115
    • /
    • 2009
  • Although nanosecond pulsed laser drilling and milling are rapid and non-wear processes in micromachining, the quality cannot meet the precision standard due to the recast layer and heat affected zone. On the other hand, electrical discharge machining (EDM) is a well-known high precision machining process in micro scale; however, the low material removal rate (MRR) and tool wear remain as drawbacks. In this paper, hybrid process of laser beam machining (LBM) using nanosecond pulsed laser and micro EDM was studied for micro drilling and milling. While the quality of the micro structure fabricated by this hybrid process remains as high as direct EDM, the machining time and tool wear can be reduced. In addition, variable depth of layer was introduced as an effective method improving efficiency of hybrid milling.

A Study on Performance Improvement of Electrical Discharge Machining for Producing Micro-holes Using a Shot Blasting Surface Treatment (쇼트 블라스팅 표면처리를 통한 미세홀 방전가공 성능향상에 관한 연구)

  • Jang, H.S.;Kim, H.S.;Shin, K.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.312-318
    • /
    • 2012
  • With an increasing trend toward miniaturization, electrical discharge machining(EDM) has been receiving a lot of attention as a suitable production technology for micro-parts, since it enables the machining of hard conductive materials with a high degree of repeatability and without alteration to the material. When a micro-hole is fabricated by EDM, however, the diameter of the inlet hole is larger than that of the outlet region due to the additional discharge effect caused by the eroded particles. In this paper, a shot blasting surface treatment, in which an abrasive material is accelerated through a pressurized nozzle and directed at the surface of a part, is suggested as an effective method to reduce the tapered shape of EDM micro-hole. In addition, the influence of process parameters such as spark-on time and electrode diameter on the machining performance was investigated. It is shown quantitatively that the difference in diameter between the inlet and outlet holes decreases with the shot blasting treatment and with decreasing spark-on time.

Machining Characteristics of ED-Drilling (ED-Drilling의 방전가공 특성)

  • 김창호;허관도;예상돈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.827-830
    • /
    • 2000
  • This paper describes the machining characteristics of the sintered carbide and die steel by electric discharge drilling with various tubular electrodes. Electrical discharge machining(EDM) removes material from the workpiece by a series of electrical sparks that cause localized temperatures high enough to melt or vaporise the metal in the vicinity of the charge. In the experiment, four types of electrode which have different diameter are used with the application of continuous direct current and axial electrode feed. The controlled factors include the dimension of the electrode. In drilling by EDM, the dielectric flushed down the interior of the rotating tube electrode, in order to facilitate the removal of machining debris from the hole.

  • PDF

Tool Electrode Wear Compensation using Round Trip Method for Machining Cavities in Micro EDM Process (마이크로 방전가공에서 Round Trip Method를 이용한 전극마모 보정)

  • Park Sung-Jun;Kim Young-Tae;Min Byung-Kwon;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.42-49
    • /
    • 2004
  • Electrical discharge machining (EDM) is one of the most extensively used non-conventional material removal process. The recent trend in reducing the size of product has given micro EDM a significant amount of research attention. Micro EDM is capable of machining not only micro holes and micro shafts as small as a few micrometers in diameter but also complex three dimensional micro cavities. But, longitudinal tool wear by electrical discharge is indispensable and this affects the machining accuracy in micro EDM process. Therefore, newly developed tool wear compensation strategy called round trip method is suggested and verified by experiment. In this method, machining depth of cut, overlap effect and critical travel length are also considered.

Prediction of the Heat-Affected Zone in the Micro Electric Discharge Machining (미세 방전가공에서의 열영향층 예측)

  • Kim T.G.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.422-425
    • /
    • 2005
  • This study predicts the heat-affected zone (HAZ) after electrical discharge machining. To predict HAZ, the temperature distribution is calculated using FEM. Heat flux is calculated from electrical energy, and it can be assumed Gaussian distribution. Plasma channel expands as time goes. Copper and NAK80 are used as the workpiece material. The depth of HAZ in simulation is determined by temperature distribution. The simulation results were compared with a developed actual single discharge crater. Through investigating the cross section of simulated & actual craters, the depth of HAZ in simulation and experiment are compared. Simulation model can predict the crater shape.

  • PDF

Optimum selection of machining parameters of Wire Electrical Discharge Machining using Taguchi method (다구찌 실험계획법을 이용한 와이어 방전가공의 최적 가공조건 선정)

  • 임세환;김주현;이위로;박주승
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.123-128
    • /
    • 2002
  • The machining parameters for the wire electrical discharge machining(WEDM), including no load voltage, pulse-on time, pulse-off time, wire tension, water flow rata offset etc. should be chosen properly so that a better performance can be obtained An optimum selection of machining parameters relies heavily on the operators technologies and experience. This study presents a method by means of Taguchi method to select optimal machining parameter combination for an cutting speed or surface roughness. Experimental results demonstrate that the machining models are appropriate and the derived machining parameters satisfy the real requirements in notice.

  • PDF