• Title/Summary/Keyword: Electrical Devices

Search Result 5,733, Processing Time 0.042 seconds

The characteristics of the electroluminescent devices using new organic materials, PRL-401, 403 (새로운 발광물질인 PRL-401, 403을 사용한 EL소자의 특성분석)

  • Kim, Jun-Ho;Lee, Sang-Pil;Lee, Kwang-Sup;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1742-1744
    • /
    • 2000
  • Organic materials have been considered for the fabrication of practical electroluminescent(EL) devices because a large number of organic materials are known to have extremely high fluorescence quantum efficiencies in the visible spectrum. In this study, electroluminescent devices are constructed using novel organic materials PRL-401, PRL-403 as the emitting elements. The devices have a triple-layer structure of organic thin films, prepared by vacuum vapor deposition. Greenish yellow electroluminescent emission is observed. The maximum luminances are over 1000 $cd/m^2$ and the turn-on voltages are about 13 V.

  • PDF

A Study on Operating Lifetime of Cs3Sb Emitters in Panel Device Applications

  • Jeong, Hyo Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.176-179
    • /
    • 2017
  • Non-vacuum processing technology was used to produce $Cs_3Sb$ photocathodes on substrates and fabricate in-situ panel devices. Electrical properties of these panel devices were characterized by measuring anode current and charge dose as functions of devices operation time. An excitation light source with a 475 nm wavelength was used for photocathodes. Results showed that emission properties of these photocathode emitters depended heavily on the vacuum level of these devices and that $Cs_3Sb$ flat emitters had the potential of operating for a long lifetime with stable electron emission characteristics via re-cesiation process in the panel device. These features make $Cs_3Sb$ photocathodes suitable as flat emitters in panel device applications.

The Development of 440V, 500KVA Inverter System using the IGBT Devices (440V, 500KVA IGBT Type 인버터의 개발)

  • Kim, J.K.;Choi, U.D.;Jung, M.K.;Kim, M.C.;Yun, J.H.;Son, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.749-752
    • /
    • 1993
  • This paper deals with the development of three phase 440[V], 500[KVA] Inverter system using the IGBT Devices. IGBT's have been used very successfully in variable frequency induction motor drive equipment. Problems associated with power devices characteristics when power devices are operated in parallel, such as balanced switching behavior and thermal stability, can be solved by using NPT type IGBT's. By Experimental results, it is confirmed that the voltage overshoot and reverse recovery current was very low. The equipment had proved to be reliable and short circuit proof. In addition, the performances in term of thermal characteristics, protection functions and stability are satisfactory.

  • PDF

The Effects of Airport Passengers, CCTV, Signal Device & Electric Alarms on Export to Korea (공항 환승여객과 CCTV, 전기진단 및 의료기기, 전기경보 및 신호장치의 수출이 한국 수출에 미치는 영향 분석)

  • Jang, Ye-Jin;Choi, Jeong-Il
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.217-225
    • /
    • 2020
  • In recent years, the "social distance" has drastically reduced overseas travelers. On the other hand, for personal safety and security, it is expected that interest and demand for CCTV, electric alarm and signaling devices, electric diagnostics and medical devices will increase significantly. The purpose of this paper is to find out the effect of airport transfer passengers and exports of CCTV, electrical diagnostics and medical devices, electrical alarms and signaling devices on exports to Korea, and the synchronism of each variable. To this end, this study used a total of 231 monthly data from January 2000 to April 2020 in the National Statistics Service. As a result of empirical analysis, CCTV and electrical diagnostics and medical devices showed relatively high synchronization with respect to exports to Korea. Electric alarms & signaling devices and transit passengers also showed a certain level of synchronization with exports, but were relatively weak.

Electrical Modeling of Renewable Energy Sources and Energy Storage Devices

  • Williamson, Sheldon S.;Rimmalapudi, S.Chowdary;Emadi, Ali
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.117-126
    • /
    • 2004
  • This paper focuses on the electrical modeling techniques of renewable energy sources and storage devices such as batteries, fuel cells (FCs), photovoltaic (PVs) arrays, ultra-capacitors (UCs), and flywheel energy storage systems (FESS). All of these devices are being investigated recently for their typical storage and supply capabilities for various industrial applications. Hence, these devices must be modeled precisely taking into account the concerned practical issues. An obvious advantage of electrically modeling these renewable energy sources and storage devices is the fact that they can easily be simulated in real-time in any CAD simulation program. This paper reviews several types of suitable models for each of the above-mentioned devices and the most appropriate model amongst them is presented. Furthermore, a few important applications of these devices shall also be highlighted.

Temperature-dependent Electrical Characteristics of Traveling Wave Electro-absorption Modulator (온도 변화에 따른 진행파 전극형 광 변조기의 전기적 특성 변위에 관한 연구)

  • Rhew, Keun-Ho;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.63-64
    • /
    • 2006
  • Recently, researches for high-speed optical devices have been increased to provide mass data transmission and high-speed optical communication. Optical modulator in the transmission link is one of the crucial devices in total optical network system and it can affect a great effect to the whole transmission properties. In this paper, traveling wave electro-absorption modulator (TWEAM) is examined to ensure high efficiency in the RF range and wide bandwidth. In addition, the temperature-dependence electrical characteristics of TWEAM is investigated. Temperature dependent property variations were characterized using I-V and C-V measurement.

  • PDF

Fabrication of a FBAR device using a novel process and the effect of bottom electrode on the frequency response (신 공정을 이용한 멤브레인형 체적탄성파 공진기의 제작 및 하부전극이 주파수 응답특성에 미치는 영향)

  • Kim, Bo-Hyun;Kim, Do-Young;Cho, Dong-Hyun;Lee, Jin-Bock;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1594-1596
    • /
    • 2004
  • Film bulk acoustic resonator (FBAR) devices which adopt a membrane-type configuration are fabricated by a novel process. In contrast to the conventional FBAR structure, the newly fabricated resonator doesn't employ any supporting layer below or above it, so that the properties of piezoelectric layer are not influenced by the bottom electrode material. FBAR devices with Mo/AlN/Metal configuration are also fabricated. The frequency response characteristics ($S_{11}$) of the devices fabricated using the proposed process are compared with those of the conventional devices. The return losses are also estimated, in terms of the kind and thickness of bottom electrode materials.

  • PDF

ITO Nanowires-embedded Transparent Metal-oxide Semiconductor Photoelectric Devices (ITO 나노와이어 기반의 투명 산화물 반도체 광전소자)

  • Kim, Hyunki;Kim, Hong-Sik;Patel, Malkeshkumar;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.808-812
    • /
    • 2015
  • Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction of p-type NiO and n-type ZnO. A functional template of ITO nanowires (NWs) was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

NiO-transparent Metal-oxide Semiconductor Photoelectric Devices (NiO 기반의 투명 금속 산화물 반도체 광전소자)

  • Ban, Dong-Kyun;Park, Wang-Hee;Eun, Seong Wan;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.359-364
    • /
    • 2016
  • NiO serves as a window layer for Si photoelectric devices. Due to the wide energy bandgap of NiO, high optical transparency (over 80%) was achieved and applied for Si photoelectric devices. Due to the high the high mobility, the heterojunction device (Al/n-Si/$SiO_2$/p-NiO/ITO) provide ultimately fast photoresponses of rising time of $38.33{\mu}s$ and falling time of $39.25{\mu}s$, respectively. This functional NiO layer would provide benefits for high-performing photoelectric devices, including photodetectors and solar cells.

A Review: Comparison of Fabrication and Characteristics of Flexible ReRAM and Multi-Insulating Graphene Oxide Layer ReRAM (산화 그래핀을 절연층으로 사용한 유연한 ReRAM과 다층 절연층 ReRAM의 제작 방법 및 결과 비교)

  • Kim, Dong-Kyun;Kim, Taeheon;Yoon, Taehwan;Pak, James Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1369-1375
    • /
    • 2016
  • A rapid progress of the next-generation non-volatile memory device has been made in recent years. Metal/insulator/Metal multi-layer structure resistive RAM(ReRAM) has attracted a great deal of attention because it has advantages of simple fabrication, low cost, low power consumption, and low operating voltage. This paper describes the working principle of the ReRAM device, a review of fabrication techniques, and characteristics of flexible ReRAM devices using graphene oxide as an insulating layer and ReRAM devices using multi-layered insulator. The switching characteristics of the above ReRAM devices have been compared. The oxidized graphene could be employed as an insulator of next generation ReRAM devices.