• 제목/요약/키워드: Electrical Charging

검색결과 866건 처리시간 0.031초

Investigation on the Electrical Discharge Characteristics of a Unipolar Corona-Wire Aerosol Charger

  • Intra, Panich;Yawootti, Artit;Vinitketkumnuen, Usanee;Tippayawong, Nakorn
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.556-562
    • /
    • 2011
  • In the present study, a simple corona-wire charger for unipolar diffusion charging of aerosol particles is designed, constructed, and characterized. Experimental characterizations of the electrostatic discharge in terms of current-voltage relationships of positive and negative coronas of the corona-wire charger are also presented and discussed. The charging current and ion concentration in the charging zone increased monotonically with corona voltage. The negative corona showed higher current than the positive corona. At the same corona voltages, the current in the discharge zone is about 600 times larger than the charging current. The ion number concentrations ranged within approximately $5.0{\times}10^{10}$ to $1.24{\times}10^{16}$ and $4.5{\times}10^{12}$ to $2{\times}10^{16}$ ions/$m^3$ in the discharge and charging zones, respectively. A numerical model is used to predict the behavior of the electric potential lines. Numerical results of ion penetration through the inner electrode are in good agreement with the experimental results.

A study on charging and electrical stability characteristics with no-insulation and metal insulation in form of racetrack type coils

  • Quach, Huu Luong;Kim, Ho Min
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권3호
    • /
    • pp.13-19
    • /
    • 2020
  • This study presents the experiment and simulation results on the magnetic field response and electrical stability behaviors of no-insulation (NI) and metal insulation with stainless steel tape (MI-SS) which wound in form of racetrack type coils. First of all, the structural design of the racetrack type bobbin was shown along with its parameters. Then, the current-voltage tests were carried out to measure the critical current of both test coils. Also, the sudden discharging and charging tests were performed in the steady state to estimate the decay field time and magnetic field response, respectively. Finally, the overcurrent tests were conducted in the transient state to investigate the electrical stability of these test coils. Based on the experimental results, the contact surface resistances were calculated and applied to the field coils (FCs) of 10-MW-class second generation high temperature superconducting generator (2G HTSG) used in wind offshore environment. The charging delay time and electrical stability for NI and MI-SS HTS FCs of 10-MW-class 2G HTSG are analyzed by the equivalent circuit model and the key parameters which were obtained from the electromagnetic finite element analysis results.

제주도에서 전기자동차 보급이 전력계통에 미치는 영향 (The Effects of Penetration of the Electric Vehicles on the Electric Power Grid in the Jeju Island)

  • 오성보;이개명;황충구
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.10-17
    • /
    • 2014
  • The Jeju Special Self-Government Provincial Government has made the plan penetrating gradually electric vehicles(EVs) in the Jeju Special Self-Government Province(Jejudo). However the effects of EVs penetration on the electrical grid of the Jejudo is not reported. In this paper the yearly electric energy consumed by the EVs was calculated and the effects of the EV penetration on the peak power of the grid were analyzed in the Jejudo for the future 10 years, and we hope that our study results will help the governors realize the EVs penetration plan in the Jejudo. The calculation results show that the rate of the electric energy used by the EVs will become to 2.9% at its maximum at the 2017 year when the penetration rate of EVs in passenger cars becomes 10%, and the rate of the electric energy consumed by the EVs will become to 9.4% at its maximum at the 2020 year when the penetration rate of EVs in passenger cars becomes 30%. The concepts of smart-charging capacity and 100%-valley-filling charging capacity of the grid were defined and calculated for the Jeju Grid, and the grid was analyzed to have the sufficient EV charging capacity until the 2022 year.

배터리 충·방전용 3상 인터리브드 양방향 DC-DC 컨버터의 새로운 소프트 스위칭 방법 (New Soft-Switching Method of 3-phase Interleaved Bidirectional DC-DC Converter for Battery Charging and Discharging)

  • 정재헌;서보길;권창근;노의철;김인동;김흥근;전태원
    • 전력전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.383-390
    • /
    • 2014
  • This paper deals with novel soft-switching method for a bidirectional DC-DC converter in battery charging and discharging system. The proposed soft-switching method provides ZVS and ZCS at turn-on, and ZVS at turn-off of the switch in both charging and discharging operation modes. The soft switching condition can be obtained in wide load range, and provide low switching loss as well as low voltage spike at turn-off of the switch. Proposed method is analyzed in charging and discharging mode. Simulation and experimental results validate the usefulness of the proposed soft-switching method.

Wireless Power Transfer for Electric Vehicles Charging Based on Hybrid Topology Switching With a Single Inverter

  • Chen, Yafei;Zhang, Hailong;Kim, Dong-Hee;Park, Sung-Jun;Park, Seong-Mi
    • 한국산업융합학회 논문집
    • /
    • 제23권2_1호
    • /
    • pp.115-124
    • /
    • 2020
  • In wireless power transfer (WPT) system, the conventional compensation topologies only can provide a constant current (CC) or constant voltage (CV) output under their resonant conditions. It is difficult to meet the CC and CV hybrid charging requirements without any other schemes. In this study, a switching hybrid topology (SHT) is proposed for CC and CV electric vehicle (EV) battery charging. By utilizing an additional capacitor and two AC switches (ACSs), a double-side LCC (DS-LCC) and an inductor and double capacitors-series (LCC-S) topologies are combined. According to the specified CC and CV charging profile, the CC and CV charging modes can be flexibly converted by the two additional ACSs. In addition, zero phase angle (ZPA) also can be achieved in both charging modes. In this method, because the operating frequency is fixed, without using PWM control, and only a small number of devices are added, it has the benefits of low-cost, easy-controllability and high efficiency. A 3.3-kW experimental prototype is configured to verify the proposed switching hybrid charger. The maximum DC efficiencies (at 3.3-kW) of the proposed SHT is 92.58%.

휴대용 고압 기기에 적합한 커패시터 충전 속도 향상 방안 (Method for improving the capacitor charging speed of portable high voltage device)

  • 김철진;홍성호;이수랑;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.215-217
    • /
    • 2007
  • This paper proposes the method to improve the charging speed of high voltage capacitor used in the portable medical device. The feedback control method with microprocessor was used to detect charging time and control charging voltage. The result shows that the proposed method is more efficient than only voltage check method with typical charging sequence control.

  • PDF

Charging and Discharging Characteristics of Electric Double Layer Capacitors used for a Storage Battery of Solar Energy

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권2호
    • /
    • pp.97-102
    • /
    • 2007
  • The charging/discharging characteristics of electric double layer capacitors (EDLCs) for an electric power storage device application were investigated. The specific area of the carbonaceous electrode surface by the BET method was in the range of $1800{\sim}2000\;m^2/g$. The charge distributions during charging and discharging were measured by means of a pulsed-electro-acoustic (PEA) method, and the voltage characteristics of EDLCs connected to solar cells were evaluated. The results showed that the distributions of positive and negative charges were spatially uneven, which was due to the mobility of the positive and negative charges in the carbonaceous electrode surface of the EDLCs. The charge accumulation region concentrated on central part of the carbonaceous electrode and the required times for charging and discharging were almost same.

전기충전소의 경제적 운영을 위한 독립발전 시스템 설계 (Independent Generation System Design for the Economic Management of Electrical Charging Stations)

  • 서진규;김규호;이상봉
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.222-227
    • /
    • 2015
  • This paper presents the optimal energy generation systems for economical EVs(Electric Vehicles) charging stations located in an island area. The system includes grid electricity, diesel generator and renewable energy sources of wind turbines and PV(Photovoltaic) panels. The independent generation system is designed with data resources such as annual average wind speed, solar radiation and the grid electricity price by calculating system cost under different structures. This sensitive analysis on the varying data resources allows for the configuration of the most economical generation system for charging stations by comparing initial capital, operating cost, NPC(Net Present Cost) and COE(Cost of Energy). Depending on the increase of the grid cost, the NPC variation of the most economical system which includes renewable energy generations and grid electricity can be smaller than those of other generation systems.

Analytical and numerical simulation on charging behavior of no-insulation REBCO pancake coil

  • Quach, Huu Luong;Kim, Ji Hyung;Chae, Yoon Seok;Moon, Jae Hyung;Ko, Jung Hyup;Kim, Hyung-Wook;Kim, Seog-Whan;Jo, Young-Sik;Kim, Ho Min
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.16-19
    • /
    • 2018
  • This paper presents analytical and numerical simulation approaches on charging characteristics of no-insulation (NI) REBCO pancake coil by using the equivalent circuit model to estimate magnetic performance response in the coil. The analytical methods provide closed form or definite solution in the form of complete mathematical expressions but they are hard to solve the complex problems. Numerical methods have become popular with the development of the computing capabilities to solve the problems which are impossible or very hard to solve analytically. First of all, the equivalent circuit model are proposed to develop the simulation code for both analytical and numerical method. The charging test was performed under critical current to obtain magnetic field induced and terminal voltage through the radial as well as spiral current paths within the coil. To verify the validity of both proposed methods, the simulation results were compared and discussed with the experimental results.

충전부에 접촉된 인체의 전위특성에 관한 연구 (A Study on the Potential Characteristics of Human-body Contacted the Charging Part)

  • 송길목;최충석;정연하;노영수;곽희로;박중신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1942-1944
    • /
    • 2004
  • In this paper, we studied on the potential characteristics of human-body contacted the charging part. A charging part of electrical facilities and the earth are simulated by the e1ectrode pole and conductive rubber plates respectively. As the results of these follows, when the potential distribution of the human-body contacted the charging part is far from the electrode pole, a lot of currents flow through the human-body. Besides human-body non-contacted the charging part is affected by step voltage. Therefore, we could find out the causes of the electric shock accidents and be expected to the data for minimization of human error occurred the workspace.

  • PDF