• 제목/요약/키워드: Electrical Charging

검색결과 866건 처리시간 0.027초

친환경 버스 도입에 따른 경제성 분석에 관한 연구 (대구광역시 중심으로) (A Study on the Economic Analysis of Introducing Battery-Based Eco Bus: Case Study of Daegu City, South Korea)

  • 박재석;김성열;김동민
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.343-351
    • /
    • 2018
  • Renewable energy sources has drawn considerable attention as clean energy sources because of changing public attitudes regarding greenhouse gas and fine dust. Recently, in this respect, the government provides the drivers of electric vehicles with various benefits such as tax reduction, financial incentives and free parking from the public to the private sector. Plug-in electric vehicles are the most common in the private sector. Otherwise, different types of battery-based buses in the public sector are being developed, and there are three main types of charging: plug-in, battery swapping and wireless. Therefore, economic assessment of charging types in each bus route is required in order to facilitate the use of battery-based buses instead of the existing CNG buses. In this paper, net present value(NPV) and B/C ratio of charging types are evaluated in consideration of the bus schedule, the cost of charging station, and the life cycle of battery, etc. per each bus route. In case study, main bus routes in Daegu City are simulated with the proposed evaluation method to validate the eco-bus project.

Comparative Study on Electrical Discharge and Operational Characteristics of Needle and Wire-Cylinder Corona Chargers

  • Intra, Panich;Tippayawong, Nakorn
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.520-527
    • /
    • 2006
  • The electrical discharge and operational characteristics of needle and wire-cylinder corona charger based on current measurements for positive and negative coronas were evaluated and compared. A semi-empirical method was used to determine the ion concentrations in the charging zone and at the outlet of both chargers. Results from experimental investigation revealed that magnitudes of the charging current from the wire-cylinder charger were approximately 3.5 and 2 times smaller than those from the needle charger for the positive and negative coronas, respectively. The ion number concentrations at the outlet for positive corona of both chargers were higher than fur negative corona at the same voltage. Flow and electric fields in the charging zone of both chargers were also analyzed via numerical computation. Strong electric field strength zone was identified and led to high charging and particle deposition. Effect of particle deposition on the evolution of discharge current was presented. It was shown that ions loss inside the wire-cylinder charger was higher than the needle charger The particle deposited on the corona electrodes and on the grounded cylinder caused a great reduction in charging efficiency of both chargers.

대출력 고전압 35 kW, 50 kV 인버터 전원장치 개발에 관한 연구 (Study on the High and High Voltage 35 kW, 50 kV Inverter Power Supply)

  • 손윤규;장성덕;오종석;조무현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권11호
    • /
    • pp.628-634
    • /
    • 2002
  • A capacitor-charging power supply using high frequency inverter technology is strongly recommended for the charging section of the pulsed power supplies. A high frequency inverter swiching makes the overall system size small. The command-charging feature can guarantee the higher reliability of switching function. The protection circuit can be easily included in the system and the good regulation of charging voltage can be acieved by the feedback system. Several modules can be stacked to supply required output power and a failed module can be easily replaced. A 50-kV, 35-kW capacitor charging power supply is developed. In this paper the detailed design and test results of a prototype unit are presented.

PTFE 일렉트렛트의 대전 과정 시뮬레이션 (Simulation of Charging Process in PTFE Electret)

  • 박건호;김상진;성낙진;배덕권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집
    • /
    • pp.123-126
    • /
    • 2005
  • In this study, the Thermally Stimulated Current(TSC) of corona charged PTFE is studied and the simulation of corona charging process is also calculated by Finite Element Method. The electrets which were formed by applying high voltages (DC ${\pm}5{\sim}{\pm}8$ [kV]) to PTFE, are used to measure TSC in the temperature range of $-100{\sim}+200$ [$^{\circ}C$] and then the Finite Element Method is performed to examine corona charging process using a obtained physical constants. As a result. it is confirmed that the charging negative corona is profitable as the applications are manufactured, because the time constant of negative corona is much larger than it of positive corona. And it is attempted to estimate the corona charging process in space using simulation.

  • PDF

배터리 충, 방전 및 영전압 제어를 위한 양방향 컨버터 설계 (Design of a Bidirectional Converter for Battery Charging, Discharging and Zero-voltage Control)

  • 최재혁;권혁진;권재현;이준영
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.431-437
    • /
    • 2022
  • This study proposes a converter that makes battery charging, discharging, and zero voltage control possible. The proposed topology consists of an LLC converter and a half-bridge inverter, and all power semiconductor devices are applied Si-MOSFETs. The topology is designed with an LLC switching frequency of 100 kHz, a half-bridge inverter switching frequency of 50 kHz, and a battery voltage of 5 V. The advantages of the charging/discharging operation of the 5 V battery voltage and the zero voltage control of the battery are verified. In addition, by using a two-stage topology, the battery can be charged, discharged through current control, and discharged to zero voltage. With the proposed topology, the current can be maintained even when the battery voltage drops to zero.

Decision-Making of Determining the Start Time of Charging / Discharging of Electrical Vehicle Based on Prospect Theory

  • Liu, Lian;Lyu, Xiang;Jiang, Chuanwen;Xie, Da
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.803-811
    • /
    • 2014
  • The moment when Electrical Vehicle (EV) starts charging or discharging is one of the most important parameters in estimating the impact of EV load on the grid. In this paper, a decision-making problem of determining the start time of charging and discharging during allowed period is proposed and studied under the uncertainty of real-time price. Prospect theory is utilized in the decision-making problem of this paper for it describes a kind of decision making behaviors under uncertainty. The case study uses the parameters of Springo SGM7001EV and adopts the historical realtime locational marginal pricing (LMP) data of PJM market for scenario reduction. Prospect values are calculated for every possible start time in the allowed charging or discharging period. By comparing the calculated prospect values, the optimal decisions are obtained accordingly and the results are compared with those based on Expected Utility Theory. Results show that with different initial State-of-Charge ($SoC_0$) and different reference points, the optimal start time of charging can be the one between 12 a.m. to 3 a.m. and optimal discharging starts at 2 p.m. or 3p.m. Moreover, the decision results of Prospect Theory may differ from that of the Expected Utility Theory with the reference points changing.

New Prediction of the Number of Charging Electric Vehicles Using Transformation Matrix and Monte-Carlo Method

  • Go, Hyo-Sang;Ryu, Joon-Hyoung;Kim, Jae-won;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.451-458
    • /
    • 2017
  • An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.

A Study on EV Charging Scheme Using Load Control

  • Go, Hyo-Sang;Cho, In-Ho;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1789-1797
    • /
    • 2017
  • It is necessary to charge electric vehicles in order to drive them. Thus, it is essential to have electric vehicle charging facilities in place. In the case of a household battery charger, the power similar to that consumed by a household with a basic contract power of 3kW is consumed. In addition, many consumers who own an electric vehicle will charge their vehicles at the same time. The simultaneous charging of electric vehicles will cause the load to increase, which then will lead to the imbalance of supply and demand in the distribution system. Thus, a smart charging scheme for electric vehicles is an essential element. In this paper, simulated conditions were set up using real data relating to Korea in order to design a smart charging technique suitable for the actual situation. The simulated conditions were used to present a smart charging technique for electric vehicles that disperses electric vehicles being charged simultaneously. The EVs and Smart Charging Technique are modeled using the Electro Magnetic Transients Program (EMTP).

전기자동차용 리튬이온 배터리 급속충전장치 설계와 제어 (A Design and Control of Rapid Electric Vehicle Charging System for Lithium-Ion Battery)

  • 강태원;서용석;박현철;강병익;김성훈
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.26-36
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

경제성을 고려한 전기자동차 충전시스템과 배터리 교체형 시스템의 비교분석 연구 (A Study of Comparing and Analyzing Electric Vehicle Battery Charging System and Replaceable Battery System by Considering Economic Analysis)

  • 김시연;황재동;임종훈;송경빈
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1242-1248
    • /
    • 2012
  • Electric vehicle usage is currently very low, but it will be increase with development of electric vehicle technology and a good government policy. Moreover in 2020, advanced electric vehicle manufacturing system will give high performance for its price and mass production. Electric vehicle will become widespread in Korea. From an operational and a planned viewpoint, the electric power demand should be considered in relation to diffusion of electric vehicles. This paper presents the impact of the various battery charge systems. A comparison is performed for electric vehicle charging methods such as, normal charging, fast charging, and battery swapping. In addition, economic evaluation for the replaceable battery system and the quick battery charging system is performed through basic information about charging Infrastructure installation cost. The results of the evaluation show that replaceable battery system is more economical and reliable in side of electric power demand than quick battery charging system.