• Title/Summary/Keyword: Electrical Charging

Search Result 866, Processing Time 0.029 seconds

New Pre-charging Method for Modular Multi-level Converter Operated in Nearest Level Control Modulation (근사 계단 제어 변조로 동작하는 모듈형 멀티 레벨 컨버터를 위한 새로운 초기 충전 기법)

  • Kim, Kyo-Min;Kim, Jae-Hyuk;Kim, Do-Hyun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1655-1663
    • /
    • 2016
  • Recently the researches on Modular Multi-level Converter (MMC) are being highlighted because high quality and efficient power transmission are key issues in the High Voltage Direct Current (HVDC) transmission system. This paper proposes an improved pre-charging method for the sub-module capacitors in MMC that operates in Nearest Level Control (NLC) modulation. The proposed method does not require additional circuits or Pulse Width Modulation (PWM) techniques. The feasibility of proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 sub-modules per each arm. Hardware experiments with a scaled prototype were performed in the lab to confirm the simulation results.

Optimal Coordination of Charging and Frequency Regulation for an Electric Vehicle Aggregator Using Least Square Monte-Carlo (LSMC) with Modeling of Electricity Price Uncertainty

  • Lee, Jong-Uk;Wi, Young-Min;Kim, Youngwook;Joo, Sung-Kwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1269-1275
    • /
    • 2013
  • Recently, many studies have suggested that an electric vehicle (EV) is one of the means for increasing the reliability of power systems in new energy environments. EVs can make a contribution to improving reliability by providing frequency regulation in power systems in which the Vehicle-to-Grid (V2G) technology has been implemented and, if economically viable, can be helpful in increasing power system reliability. This paper presents a stochastic method for optimal coordination of charging and frequency regulation decisions for an EV aggregator using the Least Square Monte-Carlo (LSMC) with modeling of electricity price uncertainty. The LSMC can be used to assess the value of options based on electricity price uncertainty in order to simultaneously optimize the scheduling of EV charging and regulation service for the EV aggregator. The results of a numerical example show that the proposed method can significantly improve the expected profits of an EV aggregator.

Charging Schedule Establishment of PEVs considering Power System Constraints (전력계통 제약을 고려한 플러그인 전기자동차 충전계획 수립)

  • Gwon, Han Na;Kook, Kyung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.632-639
    • /
    • 2018
  • Recently, a policy has been enforced to supply Plug-in Electric Vehicles (PEVs) but this may require reinforcement of the power system depending on its clustering because PEVs are charged directly from power systems. On the other hand, as the reinforcement of power system is limited by time and budget, it is important to supply the charging demand of PEVs efficiently using the existing power systems to increase the diffusion of PEVs. This paper establishes a charging schedule for Plug-in Electric Vehicles (PEVs) considering the power system constraints. For this, the required amount and time of the charging demand for an individual PEV was modeled to integrate into power systems based on the driving pattern and charging tariff of PEV. Furthermore, the charging schedule of PEVs was established to meet the power system constraints by calculating the operating conditions of the power systems with PEVs.

Dynamic Equivalent Battery as a Metric to Evaluate the Demand Response Performance of an EV Fleet

  • Yoon, Sung Hyun;Jin, Young Gyu;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2220-2226
    • /
    • 2018
  • Electric vehicles (EVs) are significant resources for demand response (DR). Thus, it is essential for EV aggregators to quantitatively evaluate their capability for DR. In this paper, a concept of dynamic equivalent battery (DEB) is proposed as a metric for evaluating the DR performance using EVs. The DEB is the available virtual battery for DR. The capacity of DEB is determined from stochastic calculation while satisfying the charging requirements of each EV, and it varies also with time. Further, a new indicator based on the DEB and time-varying electricity prices, named as value of DEB (VoDEB), is introduced to quantify the value of DEB coupled with the electricity prices. The effectiveness of the DEB and the VoDEB as metrics for the DR performance of EVs is verified with the simulations, where the difference of charging cost reduction between direct charging and optimized bidding methods is used to express the DR performance. The simulation results show that the proposed metrics accord well with the DR performance of an EV fleet. Thus, an EV aggregator may utilize the proposed concepts of DEB and VoDEB for designing an incentive scheme to EV users, who participate in a DR program.

Probabilistic Evaluation of Voltage Quality on Distribution System Containing Distributed Generation and Electric Vehicle Charging Load

  • CHEN, Wei;YAN, Hongqiang;PEI, Xiping
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1743-1753
    • /
    • 2017
  • Since there are multiple random variables in the probabilistic load flow (PLF) calculation of distribution system containing distributed generation (DG) and electric vehicle charging load (EVCL), a Monte Carlo method based on composite sampling method is put forward according to the existing simple random sampling Monte Carlo simulation method (SRS-MCSM) to perform probabilistic assessment analysis of voltage quality of distribution system containing DG and EVCL. This method considers not only the randomness of wind speed and light intensity as well as the uncertainty of basic load and EVCL, but also other stochastic disturbances, such as the failure rate of the transmission line. According to the different characteristics of random factors, different sampling methods are applied. Simulation results on IEEE9 bus system and IEEE34 bus system demonstrates the validity, accuracy, rapidity and practicability of the proposed method. In contrast to the SRS-MCSM, the proposed method is of higher computational efficiency and better simulation accuracy. The variation of nodal voltages for distribution system before and after connecting DG and EVCL is compared and analyzed, especially the voltage fluctuation of the grid-connected point of DG and EVCL.

A Study on the Output Stabilization of the Nd:YAG Laser by the Monitoring of Capacitor Charging Voltage

  • Noh, Ki-Kyong;Song, Kum-Young;Park, Jin-Young;Hong, Jung-Hwan;Park, Sung-Joon;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.96-100
    • /
    • 2004
  • The Nd: YAG laser is commonly used throughout many fields such as accurate material processing, IC marking, semiconductor annealing, medical operation devices, etc., due to the fact that it has good thermal and mechanical properties and is easy to maintain. In materials processing, it is essential to vary the laser power density for specific materials. The laser power density can be mainly controlled by the current pulse width and pulse repetition rate. It is important to control the laser energy in those fields using a pulsed laser. In this paper we propose the constant-frequency current resonant half-bridge converter and monitoring of capacitor charging voltage. This laser power supply is designed and fabricated to have less switching loss, compact size, isolation with primary and secondary transformers, and detection of capacitor charging voltage. Also, the output stabilization characteristics of this Nd: YAG laser system are investigated. The test results are described as a function of laser output energy and flashlamp arc discharging constant. At the energy storage capacitor charges constant voltage, the laser output power is 2.3% error range in 600[V].

Rapid Charger for 48V Lead-acid Battery (48V용 납축전지 급속 충전기)

  • Ahn, S.H.;Jang, S.R.;Ryoo, H.J.;Mo, S.C.;Oh, S.W.;Park, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.945_946
    • /
    • 2009
  • This paper describes the development of the rapid battery charger for lead-acid battery. Due to heat which is caused by increased internal resistance during charging, it is difficult to increase charging current for the lead-acid battery. In this paper, the rapid charging algorithm which apply short discharging pulse current during charging procedure is developed and it makes the ion layer, which is generated during charging time, disappeared into electrolyte. The prototype battery charger based on resonant converter is developed for 48V battery charger and test procedure is introduced.

  • PDF

Development of Very High Intensity Precharger of Electrostatic Precipitator for Diesel Particulates (디-젤배진용 강력전치하전장치의 개발)

  • Mun, Jae-Deok;Son, Hyeon;Seo, Bo-Hyeok;Kim, Gwang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1984.07a
    • /
    • pp.226-229
    • /
    • 1984
  • A novel high intensity charging device has been developed for the control of the submicron particles, such as the diesel soot particulates, which are very hard to charge highly by any means of the conventional charging device. Having new corona electrodes of a multineedle disk with the corona field-control electrodes in the outer-cylinder electrode, extremely intense and stable coronas on there sharp points expanding both radially and axially are established in the corona charging region between the multi-corona -needles and an outer-cylinder electrode. As a result, the maximum corona field intensity and current density of the charging device of the standard one on soot load in laboratory tests have been 8.5KV/cm(E=$2V_m$/D(1nD/d)) and $6.5{\mu}A/cm^2$ which enhance greatly the charging of soot particles about several 100 times higher than those obtained in conventional cylinder precipitators.

  • PDF

Fast Charging Photoflash Capacitor Charger with Wide Range Current Limiter

  • Choi, Won-Ho;Lee, Woo-Kwan;Kim, Soo-Won
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2007
  • The fast charging photoflash capacitor charger with wide range current limiter is presented. By using proposed control logic block and wide range current limiter, the photoflash capacitor charger can reduce charging time and control life of battery for user convenience. The proposed photoflash capacitor charger has 3s charging time at 3.3V battery voltage, 1.2A current limit condition. It is well-suited for portable device application like digital camera, digital video camera, and mobile phone with camera.

  • PDF

Development of 20kV Pulse Power Charging System (20kV급 Capacitor Charging Power System 개발)

  • Jeong, I.W.;Rim, G.H.;Choi, Y.W.;Lee, H.S.;Kim, J.S.;Ryoo, H.J.;Gusev, G.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.213-214
    • /
    • 2001
  • This paper describes a power supply for a rapid pulse power charging system designed for charging a $0.35{\mu}F$ capacitor to 20kV in approximately 3ms. The power supply should be capable of recharging the load capacitor maximum 300 times within one second. This power supply is based on a series resonant 3-phase inverter followed by the step-up transformers. The experiments have been carried out at different repetition rates and charging voltages.

  • PDF