• 제목/요약/키워드: Electrical Breakdown

검색결과 1,944건 처리시간 0.026초

합성절연유의 절연파괴 특성에 미치는 유동대전 억제제의 영향 (The Effect of Antistatic Agent for Streaming Electrification on the Breakdown Characteristics of Synthetic Fluids)

  • 송병기;이수원;신종열;신현택;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1414-1416
    • /
    • 1997
  • The electrical breakdown characteristics of the synthetic fluids No.2 of KS class VII used for insulating and cooling the materials for the ignition coil are studied. Also, Benzotriazole(BTA) as the streaming electrification suppressant additive is added to the oil, and the change of electrical properties due to different BTA concentration is investigated. To investigate the electrical characteristics, the breakdown strength of each specimen by an experiment for AC breakdown are analyzed. The breakdown strength of specimen by adding BTA is higher than virgin specimen in low e region, but lower than that in high region because of melting BTA. It is considered that the effective content of BTA as charge suppressant additive is about 10[ppm] from the results of AC breakdown.

  • PDF

진단용 X 선관 절연유의 전기적 특성 (Electrical Properties of Insulating Oils for Diagnostic X-ray Tube)

  • 김건중;이인성;백금문;김두호;김왕곤;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.597-600
    • /
    • 2001
  • In order to investigate the electrical properties of X-ray tube oils for insulating and cooling, the breakdown characteristics in temperature range of 20∼100[$^{\circ}C$], that of AC breakdown in 0.5∼2.5(mm) of gap length, we are made researches. The classification for the physical properties of oil for X-ray tube by FTIR and $^1$H-NMR experiments was confirmed to type of mineral oils. As for the dependance of breakdown characteristics due to electrode gap length, breakdown voltage was found nearly uniform by impurity effect according to the increase of gap. As a result the characteristics for AC breakdown, the dielectric strength was increased to 90[$^{\circ}C$] but decreased over 90[$^{\circ}C$] in the temperature range.

  • PDF

세라믹 코팅 Al 부스바의 전기적 특성 연구 (Study on Electrical Properties of Ceramic Coated Al Bus Bar)

  • 백승명;곽민환;곽동순
    • 전기학회논문지
    • /
    • 제66권11호
    • /
    • pp.1647-1650
    • /
    • 2017
  • Bus bars are used in place of cables because they can carry more electrical energy with the same volume of conductors. This paper deals with the electrical properties of ceramic coating material for busbars. A ceramic coated samples were prepared for the electrical properties test. There are two types of samples. One is a sample without degradation, and the other is a sample degraded for 30 days. Four electrical properties tests were carried out in accordance with domestic standards. Four electrical characteristics tests are AC dielectric breakdown, V-t, lighting impulse dielectric breakdown, and discharge arc. Both samples showed excellent electrical properties, and the ceramic coating material is very good insulating materials for bus bar.

절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 분석 (Analysis of Electrical Degradation in Epoxy Composites by Dielectric Breakdown Properties)

  • 최철호;박용필;임중관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.414-419
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of (idled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 MV/cm.

  • PDF

절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 평가 (Evaluation of Electrical Degradation in Epoxy Composites by Dielectric Breakdown Properties)

  • 임중관;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.212-217
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 MV/cm.

  • PDF

광유의 절연파괴에 미치는 전극간격 및 침전극 곡률반경의 영향 (The Effects of Gap Length and Tip Radius Influenced in Breakdown of Mineral Based Insulating Oil)

  • 이종섭;신태수;이운용;박영국;강성화;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.254-257
    • /
    • 1997
  • In this paper, we investigated the effects of gap length and tip radius influenced in breakdown of mineral based insulation oil Electrode system was needle-plane geometry It is to model conductive extrusions in oil filled electrical power apparatus. The tip radius of needle electrode was 5, 10, 20 and 25${\mu}{\textrm}{m}$, respectively. We measured breakdown voltage for each of tip radius with increasing electrode gap, 2mm to 12mm. It was calculated electrical breakdown strength at tip using Mason\`s equation from breakdown voltage As gap lenght increased. breakdown strength increased linearly. But, as tip radius of needle increased, breakdown strength decreased exponentially. It can be explained by tole phenomenon that electron is easily injected, as tip radius increases, and effective work function decreases. When appling DC voltage. breakdown 7tr7ilgtll was higher wheal polarity of needle was negative than positive. It is because of the space charge effect ill accordance with the influence of liquid motion.

  • PDF

전기절연유의 절연파괴에 미치는 전극간격 및 곡률반경의 영향 (The Influence of Gap Length and Tip Radius on Breakdown of Electrical Insulating Oil)

  • 강성화;채홍인;이종필;임기조
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.56-59
    • /
    • 2004
  • In this paper, we investigated the influence of gap length and tip radius on breakdown of mineral based insulation oil. Applied voltages were DC and AC voltage. Electrode system was needle-plane structure. The tip radius of needle electrode was 5, 10, 20 and 25${\mu}m$, respectively. We measured breakdown voltage for each of tip radius with increasing electrode gap, 2mm to 12mm. Electric breakdown strength at tip was calculated using Mason's equation contained geometric figure. As gap length increased, breakdown strength increased linearly. But, as tip radius of needle increased, breakdown strength decreased exponentially. It can be explained by the phenomenon that electron is easily injected, as tip radius increases, and effective work function decreases. When appling DC voltage, breakdown strength was higher when polarity of needle was negative than positive. It is because of the space charge effect in accordance with the influence of liquid motion.

유입변압기용 절연유의 절연파괴특성 (Electrical Breakdown Properties of Insulating Oils for oil-immersed transformer)

  • 이인성;신현택;이종필;이수원;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.605-608
    • /
    • 2001
  • With the intention of investigating the breakdown properties of oil-immersed transformer oils in temperature range of $20\sim100[^{\circ}C]$, we are made researches AC breakdown in the gap of $500\sim2500[{\mu}m]$. The classification for the physical properties of oil for oil-immersed transformer by FTIR and H-NMR experiments was confirmed to type of mineral oils. As the dependance of breakdown properties due to electrode gap length variation, breakdown voltage was found increasing according to the increase of gap, while dielectric strength was decreasing. As a result the characteristics for AC breakdown, It goes to prove that the breakdown voltage was increased to $90[^{\circ}C]$ but decreased over $90[^{\circ}C]$ in the temperature range. Also, breakdown voltage was found increasing in the increase of gap and the rising of temperature according to Weibull distribution.

  • PDF

여러 종류의 에폭시/이종무기물 혼합 콤포지트의 전기적 교류 절연파괴 특성 (Electrical AC Insulation Breakdown Characteristics of Various Epoxy / Heterogeneous Inorganic Mixed Composite)

  • 박재준
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1463-1470
    • /
    • 2018
  • In this study, 20 types of samples were prepared by mixing different kinds of inorganic materials to develop insulation materials for epoxy - based GIS substation equipment used under high voltage environmentally friendly insulation gas. One of the electrical characteristics, AC insulation breakdown experiment was performed. As mixing ratio of mixed heterogeneous inorganic materials, the dielectric breakdown strength was increased with increasing filler ratio of micro silica, micro silica : micro Alumina, 1:9, 3:7, 5:5, 7:3, 9:1, and decreased as the filling amount of micro alumina increased. The AC insulation breakdown characteristics were the best when the composition ratio was 9:1. The higher the content of silica, the better the interfacial properties, and the larger the alumina content ratio, the worse the interfacial properties.

Simulation on Surface Tracking Pattern using the Dielectric Breakdown Model

  • Kim, Jun-Won;Roh, Young-Su
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.391-396
    • /
    • 2011
  • The tracking pattern formed on the dielectric surface due to a surface electrical discharge exhibits fractal structure. In order to quantitatively investigate the fractal characteristics of the surface tracking pattern, the dielectric breakdown model has been employed to numerically generate the surface tracking pattern. In dielectric breakdown model, the pattern growth is determined stochastically by a probability function depending on the local electric potential difference. For the computation of the electric potential for all points of the lattice, a two-dimensional discrete Laplace equation is solved by mean of the successive over-relaxation method combined to the Gauss-Seidel method. The box counting method has been used to calculate the fractal dimensions of the simulated patterns with various exponent $\eta$ and breakdown voltage $\phi_b$. As a result of the simulation, it is found that the fractal nature of the surface tracking pattern depends strongly on $\eta$ and $\phi_b$.