• Title/Summary/Keyword: Electric-mechanical coupling coefficient

Search Result 16, Processing Time 0.021 seconds

Influence of structure coupling effect on damping coefficient of offshore wind turbine blades

  • Zhang, Jianping;Gong, Zhen;Li, Haolin;Wang, Mingqiang;Zhang, Zhiwei;Shi, Fengfeng
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.431-440
    • /
    • 2019
  • The aim of this study was to explore the influence of structure coupling effect on structural damping of blade based on the blade vibration characteristic. For this purpose, the scaled blade model of NREL 5 MW offshore wind turbine was processed and employed in the wind tunnel test to validate the reliability of theoretical and numerical models. The attenuation curves of maximum displacement and the varying curves of equivalent damping coefficient of the blade under the rated condition were respectively compared and analyzed by constructing single blade model and whole machine model. The attenuation law of blade dynamic response was obtained and the structure coupling effect was proved to exert a significant influence on the equivalent damping coefficient. The results indicate that the attenuation trend of the maximum displacement response curve of the single blade varies more obviously with the increase of elastic modulus as compared to that under the structure coupling effect. In contrast to the single blade model, the varying curve of equivalent damping coefficient with the period is relatively steep for the whole machine model. The findings are of great significance to guide the structure design and material selection for wind turbine blades.

Electrical Properties of Piezoelectric Ceramics for Ultrasonic Welder (초음파 융착기용 압전 세라믹스의 전기적 특성)

  • Lee, Su-Ho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.201-204
    • /
    • 2018
  • We know that the piezoelectric constant d, the dielectric constant, and the electric-mechanical coupling coefficient affect the output for piezoelectric ceramics used in ultrasonic welders. Therefore, in this study, the characteristics of ceramics according to the changes of additives to the components of PZT-PMN-PZW were examined. When the addition amount of $MnO_2$ was 2 wt%, the most excellent properties were shown, which suggested the applicability as a material for fusion welding.

Transient Response of a Permeable Crack Normal to a Piezoelectric-elastic Interface: Anti-plane Problem

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1500-1511
    • /
    • 2004
  • In this paper, the anti-plane transient response of a central crack normal to the interface between a piezoelectric ceramics and two same elastic materials is considered. The assumed crack surfaces are permeable. By virtue of integral transform methods, the electro elastic mixed boundary problems are formulated as two set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind in the Laplace transform domain. Time domain solutions are obtained by inverting Laplace domain solutions using a numerical scheme. Numerical values on the quasi-static stress intensity factor and the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.

Piezoelectric Characteristics of Pb(Mnsub 1/3Nb 23)Osub 3-Pb(Zr, Ti)Osub 3 Ceramics with $CeO_2$ Impurity for the Piezoelectric Transformer (Cerium Oxide 첨가에 따른 압전트랜스포머용 $Pb(Mn_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3$ 세라믹의 압전특성)

  • Ryu, Ju-Hyeon;Seo, Seong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.611-615
    • /
    • 1999
  • Piezoelectric properties of PMN-PZT ceramics with $CeO_2$ impurity were investigated. Mechanical quality factor, $Q_m$ of 1792, 1285 and the electromechanical coupling coefficient, $k_p$ of 0.52, 0.54 were obtained from the specimen with 0.25 and 0.5 mole % $CeO_2$ respectively. Curie temperature was decreased with the addition of $CeO_2$ while the electric coercive field was proportional to the amount of impurity. Based on the system ceramics with 0.5 mole % cerium oxide, a Rosen type piezoelectric transformer was fabricated and tested. Voltage step-up ratios of 230 and 13 were obtained from the transformer at no load and $100 k\Omega$ resistance, respectively. Experimental results showed a potential of the transformer for the practical use coupled with the expected strength increase by the grain size refinement.

  • PDF

Electric Characteristics of Disk-type Piezoelectric Transformer (디스크형 압전 변압기의 전기적 특성)

  • Kim, Dong-Soo;Kim, Kwang-Il;Kim, Heung-Rak;Jeong, Woo-Cheol;Nam, Hyo-Duk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1007-1013
    • /
    • 2005
  • In this study, a step-down piezoelectric transformer was fabricated to utilize as an adapter for charging batteries of mobile electronic appliances. The ceramic part of the transformer is $Pb[(Mn_{1/3}Sb_{2/3})_{_0.05}Zr_{0.475}Ti_{0.475}]O_3$ with mechanical quality factor of 1600, electromechanical coupling coefficient $59\%$, and piezoelectric constant $d_{33}$ 1300, which can be utilized as a piezoelectric transformer. A simply fabricated disk-typed test pattern of diameter 28 mm and thickness 2 mm was used to characterize output voltage, step-down ratio as a function of electrode area with the input remained constant, and power, efficiency as a function of input voltage, and temperature-dependent electric characteristics were evaluated. The sample APT1 showed the best properties. The highest admittance, effective electromechanical coupling coefficient and an appropriate mechanical quality factor were obtained at the sample with the input/output area ratio of 1:1.5 at the common electrode, and the condition of 20 $V_{rms}$, $50\;\Omega$ made the maximum efficiency of $95\%$. The temperature was increased by 14.7'E as the input voltage was increased for $50\;V_{rms},\;50\;\Omega$.

Temperature Stability of Electro-mechanical Coupling Factors of PZT Ceramics (PZT 세라믹스의 전기기계결합계수 온도 안정성에 관한 연구)

  • Lee, Gae-Myoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • In this paper, PZT piezoelectric ceramic specimens with 4 compositions (Zr/Ti=50/50, 53/47, 56/44, 58/42) in $Pb(Zr,Ti)O_3$ system were fabricated. We studied effects of poling strength and thermal aging on the temperature characteristics of eletromechanical coupling factor k31 of the specimens, which were poled with the DC electric fields, 1.5, 2.5 and 3.5 kV/mm respectively and thermally aged for an hour at $200^{\circ}C$. The eletromechanical coupling factor k31 of the specimen with the composition Zr/Ti= 53/47, nearest to the morphotropic phase boundary decreased the most greatly, irrelevant to the intensity of poling field, due to 1st thermal aging. And the temperature coefficient of eletromechanical coupling factor k31 was (-) in the tetragonal phase composition and (+) in the rhombohedral phase composition, which is reverse in the temperature coefficient of resonance frequency. It is interesting that eletromechanical coupling factor k31 of PZT ceramics is shown to be able to increase as temperature increase in the interval $-20{\sim}80^{\circ}C$.

Edge Crack Behavior in a Three Layered Piezoelectric Composite Under Anti-Plane Impact Loads (면외 충격하중을 받는 3층 압전 복합재료내의 가장자리 균열거동)

  • Kwon, Soon-Man;Son, Myung-Son;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2172-2179
    • /
    • 2002
  • In this paper, we examine the dynamic electromechanical behavior of an edge crack in a piezoelectric ceramic layer bonded between two elastic layers under the combined anti-plane mechanical shear and in-plane electric transient loadings. We adopted both the permeable and impermeable crack boundary conditions. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.

Electric Characteristics of Disk-type Piezoelectric Transformer (디스크형 압전 변압기 의 전극크기 변화에 대한 전기적 특성)

  • Kim, Dong-Soo;Kim, Young-Deog;Kim, Kwang-Il;Do, Yeung-Soo;Nam, Sung-Jin;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.226-229
    • /
    • 2005
  • In this study, a step-down piezoelectric transformer was fabricated to utilize as an adapter for charging batteries of mobile electronic appliances. The ceramic part of the transformer is $Pb[(Mn_{1/3}Sb_{2/3})_{0.05}Zr_{0.475}Ti_{0.475}]O_3$ with mechanical quality factor of 1600, electromechanical coupling coefficient 59 %, and piezoelectric constant d33 1300, which can be utilized as a piezoelectric transformer. A simply fabricated disk-typed test pattern of diameter 28 mm and thickness 2 mm was used to characterize resonant frequency, Qm, kp according to the different input/output electrode area. efficiency and power as a function of load resistance was also investigated. The sample APT showed some spurious mode and BPT showed better frequency property. Taking all properties which are admittance, effective electromechanical coupling coefficient and mechanical quality factor most suitable for piezoelectric transformer is BPT which has 12 mm diameter electrode and the condition of 15 Vrms, 30 $\Omega$ made the maximum efficiency of 93.7 % and maximum power is 6W with 50 Vrms.

  • PDF

New insights in piezoelectric free-vibrations using simplified modeling and analyses

  • Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.591-612
    • /
    • 2009
  • New insights are presented in simplified modeling and analysis of free vibrations of piezoelectric - based smart structures and systems. These consist, first, in extending the wide used piezoelectric-thermal analogy (TA) simplified modeling approach in currently static actuation to piezoelectric free-vibrations under short-circuit (SC) and approximate open-circuit (OC) electric conditions; second, the popular piezoelectric strain induced - potential (IP) simplified modeling concept is revisited. It is shown that the IP resulting frequencies are insensitive to the electric SC/OC conditions; in particular, SC frequencies are found to be the same as those resulting from the newly proposed OC TA. Two-dimensional plane strain (PStrain) and plane stress (PStress) free-vibrations problems are then analyzed for above used SC and approximate OC electric conditions. It is shown theoretically and validated numerically that, for both SC and OC electric conditions, PStress frequencies are lower than PStrain ones, and that 3D frequencies are bounded from below by the former and from above by the latter. The same holds for the modal electro-mechanical coupling coefficient that is retained as a comparator of presented models and analyses.

An Investigation on the Aging Properties of NKN Lead-free Piezoelectric Multi-layer Ceramic Actuators (NKN 무연압전 액추에이터의 신뢰성 연구)

  • Chae, Moon-Soon;Lee, Ku-Tak;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.803-806
    • /
    • 2011
  • 1 mol% $Li_2O$ excess $0.9(Na_{0.52}K_{0.48})NbO_3-0.1LiTaO_3$ lead-free piezoelectric multilayer ceramic actuators were investigated to determine their aging properties. To reduce the thermal aging behavior, we applied a rectified unipolar electric field of 5 kV/mm to the specimen to accelerate the electric aging behavior. By employing a rectified unipolar electric field for the piezoelectric actuators, we could remove undesirable heating from the relaxation current in the motion of the ferroelectric domain. To accelerate the aging test, the applied electric fields had a frequency of 900 Hz. To have enough time for charging and discharging, we employed an accurate time constant to design the equivalent circuit model for the aging tester. To extract exact aging behavior, we measured the pseudo-piezoelectric coefficient before and after the aging process. We also measured the electro-mechanical coupling coefficient, the frequency-dependent dielectric permittivity, and the impedance to compare with fresh and aged specimen.