• Title/Summary/Keyword: Electric-field

Search Result 5,143, Processing Time 0.028 seconds

Variation of the Representation Ellipsoid for Refractive Index of Bi12GeO20Single Crystal by an Electric Field (전기장에 의한 Bi12GeO20 단결정의 굴절률 표시타원체의 변형)

  • Lee, Su-Dae;Lee, Chan-Ku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.89-95
    • /
    • 2005
  • We derived a formula which can calculate the space distribution of refractive index variation by an applied electric field about Bi$_{12}$ GeO$_{20}$ single crystal. Stereographic projection maps of refractive index variation by an applied electric field were made out using numerical value to be calculated by this formula. By the calculated results, since an electric field had applied to [(equation omitted) 1 1] direction and [1 (equation omitted) 1] direction of Bi$_{12}$ GeO$_{20}$ crystal, positive variation of the refractive index of [(equation omitted) 1 1] direction and [1 (equation omitted) 1] direction was the largest. The incremented refractive index per unit electric field was +3.2410${\times}$10$^{-11}$ V$^{-1}$ for the wavelength of 6328 $\AA$. Since an electric field had applied to [1 1 1] direction and [(equation omitted) 1] direction, negative variation of the refractive index of [1 1 1] direction and [(equation omitted) 1] direction was the largest. The decremented refractive index per unit electric field was -3.2410${\times}$10$^{-11}$ V$^{-1}$ for the wavelength of 6328 $\AA$.

Electric Field Analysis of 170kV 50kA Class SF6 GCB Without Capacitor (170kV 50kA 콘덴서 불용형 SF6 가스절연개폐기의 극간 전계해석)

  • Song, Tae-Hun;Bae, Dong-Jin;Choi, Young-Chan;Kim, Ik-Mo;Yoon, Chi-Young;Kang, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.351-353
    • /
    • 1999
  • In this paper, electric field analysis of 170kV class GCB is carried out. Considering the movement of arcing contacts during circuit interruption, electric field analysis between moving and fixed contacts is performed with changing the stroke length. From analysis results, electric field stresses are high at stationary arcing contact, moving arcing contact and varies at changing nozzle shapes. Specially, the stationary arcing contact shape has an significant effect on the capacitive small current interruption and the reduction of the electric field stress at this area is important. Varying the shape of stationary arcing contact, electric field analysis is carried out and the optimal shpae of the fixed arcing contact where the electric field stress is low is designed.

  • PDF

A Study on the Electric Field Analysis of EHV Overhead Distribution Lines Using Maxwell 3D - I (Maxwell 3D를 이용한 특고압 배전선로의 전계해석에 관한 연구 - I)

  • Seo, Y.P.;Park, S.W.;Kim, C.H.;Won, C.Y.;Nam, K.D.;Ha, S.N.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.847-849
    • /
    • 1996
  • As the power demands increases, one of the most important data is inside electric field of equipment in designing of insulators ami insulated wire for EHV distribution line. So far finite element analysis method is widely used to calculate this electric field. However as the shape of insulator becomes complicated, it is difficult in producing the mesh which suitable the shape. Especially, we have many difficulty that produce dense fine mesh only where the electric field is concentrated. Therefore in this paper, we perform the each conditional analysis of electric field using the Maxwell 3D Simulator to recover this defects. And we try to analyze electric field through the conventional 2 dimensional and 3 dimensional analysis in case of salt contamination on the surface of a insulator.

  • PDF

Experimental Study on the Effect of DC Electric Field on Extinction Characteristics of Counterflow Diffusion Flame (대향류 확산화염의 소염특성에 미치는 직류전기장의 영향에 관한 실험적 연구)

  • Park, I.H.;Kim, M.K.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.253-259
    • /
    • 2006
  • The effect of DC electric fields on the flame extinction was investigated experimentally in counterflow configurations for the methane/oxygen/nitrogen diffusion flame. The electric fields was applied by connecting the high voltage and ground terminals to the upper and lower burners, respectively. In case of having electric fields, several modes of flame extinction was observed according to the electric field intensity and strain rate defined by the exit velocity. To visualize and characterize the flame structure and intensity, planar LIF technique was adopted for OH radicals. Consequently, several length scales, including the flame width, thickness, and height from the burner tip, were introduced to explain the various flame behaviors and to characterize the flame extinctions. It was found that the variation of flame width and the chemical reaction are strongly related to a critical electric field intensity, thus the various modes of diffusion flame extinction could be observed due to the electric fields.

  • PDF

Analytical model for the formation of electric fields in parallel-plate capacitors

  • Taehun Jang;Jungmin Moon;Hye Jin Ha;Sang Ho Sohn
    • Journal of Science Education
    • /
    • v.46 no.2
    • /
    • pp.212-221
    • /
    • 2022
  • In this study, we propose an analytical model to elucidate the formation of electric fields between two parallel conducting plates. Using nine Gaussian surfaces, we investigated the charge redistributions and electric fields formed by parallel conducting plates when two charged plates get close together. The electric charges are redistributed via a new electrostatic equilibrium to create the electric field of each plates. As a result, the electric field start from + electrode plate to - electrode plate via inducing a new electrostatic equilibrium, implying that the application of Gaussian surfaces to only one of the electrodes of parallel-plate capacitors is deserved. The results will help undergraduate students understand the charge redistribution and the electric field formation in parallel-plate capacitors in a reasonable manner.

Study on Prediction Method for ELF Transient Magnetic Field from Home Appliances (가전기기에서 발생되는 극저주파 과도자계 예측기법 연구)

  • Ju, Mun-No;Yang, Kwang-Ho;Myung, Sung-Ho;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.616-621
    • /
    • 2002
  • With biological effects by ELF (Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. Because the transient magnetic field induces higher current than the power frequency field inside living bodies, transient magnetic field exposure has been much focused. In this paper, it is shown that transient magnetic field from electric home appliances can be characterized as magnetic dipole moment. In this method, the dipole moment vector is assumed by allowing an uncertainty of 6dB in the estimated field. A parameter M that represents biological interaction was applied also. The proposed method was applied to 7 types of appliances (hair drier, heater, VDT, etc.) and their equivalent magnetic dipole moment and harmonic components were estimated. As the results, the useful data for quantifying magnetic field distribution around electric appliances were obtained.

Output Voltage Characteristics of HVDC Electric Field Mill Sensor for Different Speed Variables of Rotating Electrode

  • Kim, Young Sun;Park, Jae Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2001-2006
    • /
    • 2017
  • This paper explains the effects of the weak signal of a rotating-type electric field mill sensor fabricated for measuring the intensity of the electric field generated by high-voltage direct current (HVDC) power transmission lines. The fabricated field mill consists of two isolated electrode vanes, a motor driver, and a ground part. The sensor plate is exposed to and shielded from the electric field by means of a rotary shutter consisting of a motor-driven mechanically complementary rotor/stator pair. When the uncharged sensor plate is exposed to an electric field, it becomes charged. The rotating electrode consists of several conductive vanes and is connected to the ground part, so that it is shielded. Determining the appropriate design variables such as the speed of the vane, its shape, and the distance between the two electrodes, is essential for ensuring optimal performance. By varying the speed, the weak signal characteristics which is used to signal processing and calibration experiment are quite different. Each weak signal pattern was analyzed along with the output voltage characteristics, in order to be able to determine the intensity of the electric field generated by HVDC power transmission lines with accuracy.

Piezoelectric and Electric Field Induced Strain Properties of PMW-PNN-PZT Ceramics with the Substitution of Ba (Ba 치환에 따른 PMW-PNN-PZT 세라믹스의 압전 및 전계유기왜형 특성)

  • 윤광희;김규수;최병수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.20-25
    • /
    • 2001
  • To develop the piezoelectric actuator, the structural, dielectric and piezoelectric properties and electric fieldinduced strain of the ceramics(Pb$\_$1-2/Ba$\_$x/)[Mg$\_$1/2/W$\_$1/2/)$\_$0.03/-Ni$\_$1/3/Nb$\_$2/3/)$\_$0.12/-(Zr$\_$0.5/Ti$\_$0.5/)$\_$0.85/]O$_3$(x=0, 0.01, 0.03, 0.05, 0.07, 0.1) were investigated with the substitution of Ba. The tetragonality of crystal structure and grain size decreased by the substitution of Ba. Curie temperature decreased due to the decrease of the tetragonality, and dielectric constants increased with the substitution of Ba. The coercive field, remnant polarization and electromechanical coupling factor also decreased, whereas the piezoelectric constatns d$\_$33/ and d$\_$31/ were showed the highest value of 430 and 209(x10$\^$-12/C/N), respectively, because of the increase of dielectric constant. The strain induced by 60Hz AC electric field had the maximum value of 204x10$\^$-6/Δℓ/ℓ at the substitution of Ba 3mol%. As the applied electric field approaches to the coercive field, the piezoelectric element is depolarized and the electric field induced strain revealed non-linearity.

  • PDF

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

A Study on the Transient Analysis of 2[MVA] Mold Transformer for Electric Field (2[MVA] 배전용 몰드변압기의 과도전계해석에 관한 연구)

  • Jeon, Mun-Ho;Kim, Chang-Eob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.171-176
    • /
    • 2010
  • This paper presents the electric field for 22.9[kV]/380[V], 2[MVA] mold transformer are analysed using FEM(finite element method). The electric field was calculated for the voltage applied to the transformer. Then, it is analysed that the maximum electric field occurred between high voltage turns. Capacitance is calculated with energy method. Surge impulse test simulation is studied by modeling circuit with capacitance and inductance. This paper obtain the result that is about influence of electric field in distribution mold transformer adopted.