• Title/Summary/Keyword: Electric safety

Search Result 1,827, Processing Time 0.032 seconds

Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries (리튬금속과 고체전해질의 계면 반응)

  • Jae-Hun Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.287-296
    • /
    • 2023
  • Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

Optimal Arrangement of Current Leads for 24kV class SFCL to Minimize Electromagnetic Force (전자기력을 고려한 24kV급 초전도 한류기용 전류리드의 최적화 배열방안)

  • Kim, J.H.;Song, J.B.;Hwang, S.J.;Kim, K.L.;Kim, H.M.;Kim, H.R.;Hyun, O.B.;Ko, T.K.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.62-66
    • /
    • 2007
  • Electromagnetic forces (Attractive and repulsive force), interacting between current leads show different tendency according to the arrangement of current leads on the top flange of the cryostat and the distance of each lead. Especially in case of high-current electric power devices or high-field magnets, optimal arrangement of current leads becomes one of the safety issues to be considered for minimizing the electromagnetic for ce acting on them. In this paper, we suggest an optimal arrangement method with three pairs of current leads for a 24kV class 650A superconducting fault current limiter (SFCL) system which has a probability of unpredicted fault currents(i.e, 20kA).

Development of Smart Electric Cart with Safety Accident Prevention Functions (안전사고 예방 기능이 적용된 스마트 전동카트 개발)

  • Kim, Ji-won;Song, Gi-seon;Park, Tae-won;Park, Geon-yeong;Lim, Tae-ho;Jeong, Won-gyu;Lee, Chung-min;Yoo, Hongseok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.155-156
    • /
    • 2021
  • 본 논문에서는 기존 산업 현장에서 사용되는 상용화된 전동 L 카트와는 다르게 안전사고가 발생할 확률이 낮고 작업 효율성을 상승시켜주기 위한 스마트 전동카드를 제안한다. 색상 감지 및 초음파 센서를 활용하여 안전사고 예방 기능이 적용된 라인트레이싱 기반의 자율 주행 기능 스마트 전동카트를 설계하였다. 설계한 시스템에 대한 시제품을 제작하였고 실제 실험을 통해 주행성능에 대해서 검증하였다.

  • PDF

Prediction Study of Heat-Affected Zone (HAZ) Properties in ERW Pipes using Hardness Distribution and Reverse Engineering Techniques (경도분포 및 역설계 기법을 활용한 ERW 파이프 열영향부(HAZ) 물성 예측 연구)

  • S. Lee;D. Hyun;S. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.321-328
    • /
    • 2023
  • To ensure driver safety, high-strength steel pipes are utilized in the chassis and internal structures design of automobiles. ERW(electric resistance welding) pipes, fabricated through welding at joints using electrical resistance, form a Heat-Affected Zone (HAZ) during the welding process. Due to characteristics such as increased hardness and reduced ductility compared to the base material, HAZ poses challenges in finite element analysis (FEA) for pipe shapes. In this study, for FEA considering HAZ properties, mechanical properties were measured through uniaxial tensile testing and digital image correlation (DIC) techniques after specimen fabrication. These measurements were validated using reverse engineering methods. Furthermore, hardness measurements and gaussian functions were employed to ascertain the hardness distribution within the HAZ, serving as a basis for subdividing the HAZ and modeling the pipe shape. To validate the effectiveness of the HAZ modeling approach, models were interpreted incorporating only base material properties and models incorporating average-calculated HAZ properties. Comparative analysis was performed, revealing that the model subdividing the HAZ based on hardness measurements closely approximated experimental values. This validation offered a methodology for HAZ modeling in FEA.

Comparative Analysis on Characteristics of Extrusion and Drawing for Monel Material of Special Alloy with Rectangular Bar in Elastic Limit (특수합금 사각봉 모넬 소재의 탄성영역 압출 및 인발 특성 비교 해석)

  • Young-Joon Yang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.573-580
    • /
    • 2024
  • Recently, the special alloy, for instance, such as Monel and Inconel, is used for valves, bolt/nuts, and fittings in semiconductor facility, FCEV(fuel cell electric vehicle) and hydrogen gas station, to reduce the hydrogen embrittlement. Even though the Monel material has high cost, it is recommended to use for the cases of ultra high pressure, ultra high leak-proof and so on. The purpose of this study is to investigate the characteristics of Monel material within elastic limit through the comparative analysis when Monel material is extruded or drawn. As the results, the deformation of Monel material was increased as the number of pass was increased, further, the deformation of Monel material by drawing was larger than that by extrusion. In the safety factor, the case that load is less than 420kN, the plastic deformation due to drawing could be happened faster than that due to extrusion. However, the case of more than 420kN, it showed that the plastic deformation for extrusion and drawing was almost similar.

Fabrication of 3D Aligned h-BN based Polymer Composites with Enhanced Mechanical Properties for Battery Housing (3차원으로 정렬된 h-BN을 이용한 향상된 기계적 특성을 가지는 배터리 하우징용 고분자 복합소재 제작)

  • Kiho Song;Hyunseung Song;Sang In Lee;Changui Ahn
    • Journal of Powder Materials
    • /
    • v.31 no.4
    • /
    • pp.329-335
    • /
    • 2024
  • As the demand for electric vehicles increases, the stability of batteries has become one of the most significant issues. The battery housing, which protects the battery from external stimuli such as vibration, shock, and heat, is the crucial element in resolving safety problems. Conventional metal battery housings are being converted into polymer composites due to their lightweight and improved corrosion resistance to moisture. The transition to polymer composites requires high mechanical strength, electrical insulation, and thermal stability. In this paper, we proposes a high-strength nanocomposite made by infiltrating epoxy into a 3D aligned h-BN structure. The developed 3D aligned h-BN/epoxy composite not only exhibits a high compressive strength (108 MPa) but also demonstrates excellent electrical insulation and thermal stability, with a stable electrical resistivity at 200 ℃ and a low thermal expansion coefficient (11.46×ppm/℃), respectively.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

Safety Evaluation of the Dynamic Behavior of HEMU-430X using the Accelerometers of UIC 518 OR (UIC 518 OR의 가속도계를 이용한 차세대고속열차(HEMU-430X) 동적 거동 안전성 평가)

  • Ryu, Sang-Hyun;Kim, Sang-Soo;Hong, June-Hee;Song, Doo-Sang;Guo, Yang-Yang
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • The next generation high-speed train(HEMU-430X) is Korea's first electric multiple unit type, high speed vehicle resulting from a national R&D project. Tests have been conducted on the Kyungbu High Speed Line running at speeds up to 354.64km/h, and analysis of the dynamic behavior of the train was carried out to evaluate its safety. In this study, a simplified method using an accelerometer(the method specified in UIC 518 OR) was chosen to analyze the safety of the train's dynamic behavior. The section chosen for analysis section was ${\pm}10{\sim}20km/h$ with respect to the maximum speed point. In addition, we analyzed the trend of this dynamic behavior with increasing speed by comparing the analyzed values with those of UIC 518 OR. The dynamic behavior results met the limit values of UIC 518 OR and the study indicates that this trend is predicted to continue at speeds above 354km/h.

Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery (리튬 이온전지의 안전성을 구현하기 위한 난연성 전해액의 설계)

  • Choi, Nam-Soon;Kim, Sung-Soo;Narukawa, Satoshi;Shin, Soon-Cheol;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.203-218
    • /
    • 2009
  • The development of lithium-ion battery (LIB) technologies and their application in the field of large-scale power sources, such as electric vehicles (EVs), hybrid EVs, and plug-in EVs require enhanced reliability and superior safety. The main components of LIBs should withstand to the inevitable heating of batteries during high current flow. Carbonate solvents that contribute to the dissociation of lithium salts are volatile and potentially combustible and can lead to the thermal runaway of batteries at any abuse conditions. Recently, an interest in nonflammable materials is greatly growing as a means for improving battery safety. In this review paper, novel approaches are described for designing highly safe electrolytes in detail. Non-flammability of liquid electrolytes and battery safety can be achieved by replacing flammable organic solvents with thermally resistive materials such as flame-retardants, fluorinated organic solvents, and ionic liquids.

A Study on Hazards Assessment of Electrostatic Firing Explosion of Working Wears at LPG Stations in Korea (한국의 LPG 충전소에 있어서 작업복의 정전기에 의한 화재 및 폭발 위험성에 관한 연구)

  • Cho young doo;Koo Ja Hyeuk;Choi Kwang Seo;Seo Dae Won;Joung Jae Hee;Takeuchi Manabu
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.20-24
    • /
    • 2000
  • The electrostatic safety consciousness of safety manager were investigated through questionnaires sent to liquid petroleum gas stations in Korea. In addition, hazards of fire and explosion due to electrostatic on synthetic-polymer-wears and cotton-wears were estimated experimentally. The results of questionnaires indicate most workers wear their working clothes indiscreetly owing to lack of knowledge of preventing electrostatic hazards. The amounts of electrostatic charge generated in synthetic-polymer-wears were 1.79, 1.44 and 1.02 $\mu$C in winter, spring and autumn and summer, respectively. All these values exceed the limit of working wears of 0.60$\mu$C requested by Korea Standard(KS K-7807) for preventing electrostatic hazards, which means hazards may occur. While, the charge in cotton-wears were in the range of 0.42 to 0.52$\mu$C, which suggests that the cotton-wears investigated in this study have no problem of hazards. Therefore workers, visual and experiential education are necessary for elevating the standard of on electrostatics. It is also necessary to establish standards of wearing for preventing electrostatic hazards.

  • PDF