• Title/Summary/Keyword: Electric power load

Search Result 1,445, Processing Time 0.04 seconds

A Study on the Mechanical Properties of CNx Thin Films Deposited by Asymmetric Bipolar Pulsed D.C. Sputtering (비대칭 펄스 DC 반응성 스퍼터링 법에 의한 CNx 박막의 기계적 특성에 관한 연구)

  • Kim, J.H.;Kim, D.W.;Cha, B.C.;Kim, S.K.;Lee, B.S.;Jeon, S.H.;Kim, D.I.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.5
    • /
    • pp.290-297
    • /
    • 2009
  • In case of using Asymmetric Bipolar Pulsed DC (ABPD) power generator, thin film is efficiently deposited as ions are getting higher energy by suppressing target poisoning and electric arc. In this article, the mechanical properties of CNx thin films deposited on the STS 316L were compared with DC and ABPD power generators. The CNx thin films deposited with ABPD clearly improved wear resistance by higher ratio of sp3CN as compared with DC. Nb interlayer affected to increase the value of 10N of adhesion between CNx thin films and substrate. But, CNx thin films deposited with ABPD couldn't endure to wear load and decreased wear resistance as the films were too thinner than substrate. Nevertheless the higher substrate bias energy applied to perform the dense films, it wasn't shown benefits about the wear properties from DC sputtering. But, in case of using ABPD sputtering, the wear resistance was largely improved without changing morphology despite of thin films.

Performance Improvement of Pneumatic Artificial Muscle Manipulators Using Magneto-Rheological Brake

  • Ahn, Kyoung-Kwan;Cong Thanh, TU Diep;Ahn, Young-Kong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.778-791
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. Then it is not easy to realize the performance of transient response of pneumatic artificial muscle manipulator (PAM manipulator) due to the changes in the external inertia load with high speed. In order to realize satisfactory control performance, a variable damper-Magneto­Rheological Brake (MRB), is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

Analysis of Mechanical Loads During Yawing (풍력터빈 요 운동에 대한 기계적 하중 해석)

  • Nam, Yoon-Su;Choi, Han-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • The yaw control, a major part of the wind turbine, is closely related to the efficiency of electric power production and the mechanical load. The yaw error, which results from the nacelle not being appropriately aligned in the wind direction, not only decreases the power output but also reduces the lifetime of the wind turbine as a result of large fatigue loads. However, the yawing rate cannot be increased indefinitely because of constraints on mechanical loads. This paper investigates the characteristics of an active yaw control system, the basic principle of the system, and mechanical loads around the yaw axis during yawing.

An Analysis on the Effectiveness of Harmonics Reduction for Variable Frequency Drive by Reactors (리액터에 의한 가변주파수 구동장치의 고조파저감효과 분석)

  • Kim, Deok-Ki;Yoon, Kyoung-Kuk;Kim, Hee-Moon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.770-777
    • /
    • 2015
  • Recently, due to the rapid development of Power Electronics, the usage of Non Linear Load variable frequency drivers (VFDs) is increasing in the electric propulsion vessels and offshore plants. And harmonics which is generated by the variable frequency drives is an important issue should be solved. Ac line reactors and dc link reactors are widely used in variable frequency drives to improve the drive performance such as reducing input current harmonics, elevating input power factor, and protecting the drives from surges, etc. The effectiveness of both types of reactors in reducing input harmonics is affected by the loading of the drives and the system source impedance. And it considered that inductance of DC link reactors should be about 1.7 times of AC line reactors for same effect. The rules to evaluate the needs and effectiveness using ac line or dc link reactors are proposed for practical appications. In this paper, a simulation is performed to investigate of such factors using software PSIM.

A Simulation of Photocurrent Loss by Reflectance of the Front Glass and EVA in the Photovoltaic Module (전면 유리와 EVA의 광 반사에 의한 PV모듈의 광전류 손실 예측 시뮬레이션)

  • Lee, Sang-Hun;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.76-82
    • /
    • 2013
  • The solar cell is a device to convert light energy into electric, which supplies power to the external load when exposed to the incident light. The photocurrent and voltage occurred in the device are significant factors to decide the output power of solar cells. The crystalline silicon solar cell module has photocurrent loss due to light reflections on the glass and EVA(Ethylene Vinyl Acetate). These photocurrent loss would be a hinderance for high-efficiency solar cell module. In this paper, the quantitative analysis for the photocurrent losses in the 300-1200 wavelength region was performed. The simulation method with MATLAB was used to analyze the reflection on a front glass and EVA layer. To investigate the intensity of light that reached solar cells in PV(Photovoltaic) module, the reflectance and transmittance of PV modules was calculated using the Fresnel equations. The simulated photocurrent in each wavelength was compared with the output of real solar cells and the manufactured PV module to evaluate the reliability of simulation. As a result of the simulation, We proved that the optical loss largely occurred in wavelengths between 300 and 400 nm.

Multi-agent System based GENCO model for an effective market simulation (전력시장 시뮬레이션을 위한 MAS 기반 GENCO 모델링)

  • Kang, Dong-Joo;Kim, Hak-Man;Chung, Koo-Hyung;Han, Seok-Man;H.Kim, Bal-Ho;Hur, Don
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.127-129
    • /
    • 2007
  • Since the competitive market environment was introduced into the electric power industry, the structure of the industry has been changing from vertically integrated system to functionally unbundled and decentralized system composed of multiple (decision-making) market participants. So the market participants such as Gencos or LSE (load serving entity) need to forecast the market clearing price and thus build their offer or bidding strategies. Not just these market players but also a market operator is required to perform market analysis and ensure simulation capability to manage and monitor the competitive electricity market. For fulfilling the demand for market simulation, many global venders like GE, Henwood, Drayton Analytics, CRA, etc. have developed and provided electricity market simulators. Most of these simulators are based on the optimization formulation which has been used mainly for the least cost resource planning in the centralized power system planning and operation. From this standpoint, it seems somehow inevitable to face many challenges on modeling competitive market based on the method of traditional market simulators. In this paper, we propose a kind of new method, which is MAS based market simulation. The agent based model has already been introduced in EMCAS, one of commercial market simulators, but there may be various ways of modeling agent. This paper, in particular, seeks to introduce an model for MAS based market simulator.

  • PDF

Evaluation of UM-LDAPS Prediction Model for Daily Ahead Forecast of Solar Power Generation (태양광 발전 예보를 위한 UM-LDAPS 예보 모형 성능평가)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • Daily ahead forecast is necessary for the electricity balance between load and supply due to the variability renewable energy. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for more than 12 hours forecast horizon. UM-LDAPS model is the numerical weather prediction operated by Korea Meteorological Administration and it generates the 36 hours forecast of hourly total irradiance 4 times a day. This study attempts to evaluate the model performance against the in situ measurements at 37 ground stations from January to May, 2013. Relative mean bias error, mean absolute error and root mean square error of hourly total irradiance are averaged over all ground stations as being 8.2%, 21.2% and 29.6%, respectively. The behavior of mean bias error appears to be different; positively largest in Chupoongnyeong station but negatively largest in Daegu station. The distinct contrast might be attributed to the limitation of microphysics parameterization for thick and thin clouds in the model.

Characteristics Test and Model Parameter Determination of Generator/Excitation System of Yeongdong Unit 1 due to Conversion of Renewable Generation Fuel (신재생 발전 연료전환에 따른 영동1호기 발전기/제어계 특성시험 및 모델정수 도출)

  • Mun, Jeong-Min;Lee, Tae-kyu;Shin, Woo-Ju;Kim, Jeong-Uk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.586-593
    • /
    • 2019
  • In this paper, we introduce the wood pellet electric power generation system, which is an eco - friendly solid fuel processed pure wood, which is one of the largest capacity renewable power fuels in Korea, The Ministry of Commerce, Industry and Energy notified the Ministry of Land, Infrastructure, Transport and Tourism of the Ministry of Land, Transport and Maritime Affairs of the Ministry of Land, Transport and Maritime Affairs. Derived and validated. It is confirmed that the performance of the generator and the voltage control characteristics of excitation system are good even for the change of generator fuel. It can contribute to future reference at the plant that wants to replace fossil fuels with renewable fuels.

A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants (발전소의 스팀제어용 유압서보 액추에이터의 공기배출 밸브에 관한 연구)

  • Lee, Yong Bum;Lee, Jong Jik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

An analysis on Flicker Phenomenon of a Fluorescent lights for the commercial operating EMU (영업운행 전동차 객실형광등의 플리커(Flicker) 현상에 관한 분석 연구)

  • Ha, Jong-Eun;Han, Seon-Ho;Park, Jae-Hong;Lee, Dae-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1240-1246
    • /
    • 2006
  • Generally, there are two types of main factors to affect output power quality of a auxiliary power supply an EMU(electric multiple unit). One is a voltage flicker by amplitude modulation of short time and air compressors. The other is repetitive motion of large capacity motor such as air compressors, HVAC unit etc. in main factors. This paper compared two kinds of fluorescent lamp, 32W (after remodeling interior) and 40W(before remodeling interior) and measured the light output varying input power(AC220V) for a flicker phenomenon related power supply of lamps in EMU. Also, we analyzed a flicker considering EMU operating time and density in order to grasp main factors of a load change to cause a voltage change. As a results of test, a 40W fluorescent lamp was more insensitive with 20.26% degree an eye recognition degree sides about changes of the input power and lower with 19.9% voltage side generating flicker compare with fluorescent lamp 32W. Also, we confirmed the fact which the fluorescent lamp flicker was generated by varying fluorescent lamp output voltage when the commercial EMU was in high driving density and at the busy time. Additionally, we confirmed the frequency band which an EMU passenger could feel sensitively blinking of a fluorescent lamp was visually $8Hz{\sim}15Hz$.

  • PDF