• Title/Summary/Keyword: Electric power duct

Search Result 33, Processing Time 0.024 seconds

A Study for Application Ventilation System of Underground cable Tunnel (II) (지하 전력구 터널의 환기시스템 적용에 관한 연구 (II))

  • Kim, Kyoung-Yul;Oh, Ki-Dae;Kim, Dae-Hong;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.778-783
    • /
    • 2008
  • In this paper, numerical method was calculated on evaluation of underground ventilation system to keep servicing a fresh air. The tunnel length for simulation is 18.2 km with various located seven ventilation shaft. Generally, owing to thermal generation in cable tunnel under about 50 m depths, cable tunnel ventilation system is more important than that of other tunnels. So, we conducted that the effects of ventilation systems was simulated depending on the difference of electrical power tunnel length, the number of shaft tunnel, forced ventilation and duct was or not. Test results show that the main conditions in order to enhance the underground cable tunnel are that ventilation systems have to be designed with forced ventilation and with duct.

  • PDF

Design and Economics of HVAC System for Reduction of Power Consumption in Blow Mold Machine (플라스틱 연료탱크 생산 설비에서의 소비 전력 저감을 위한 공조 시스템 설계 및 경제성 평가)

  • Lee, Youngjae;Choi, Seukcheun
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.84-93
    • /
    • 2017
  • This study was carried out to improve the electric power consumption of HVAC in the blow mold machine(BMM) and work environment. The experiment was conducted with the simulated HVAC system of 1/15 of the actual BMM. The temperature of main facility and two preheaters was fixed at 200 and $60^{\circ}C$ respectively in all test conditions. The measured points of temperature were chosen as critical locations considering the work environment. The tendency of temperature distributions decreases as the duct was closed to the main facility. The reduction rate of power consumption of HVAC increases up to 32.3% when both duct and cooling systems are operated. Also the efficiency of HVAC is improved about 9% through the modified design of duct system. It notes that the electric power consumption of HVAC can be reduced by the optimum design and operating condition of duct and cooling system.

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드변압기의 덕트에 따른 열해석 특성 연구)

  • Cho, Han-Goo;Lee, Un-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1138
    • /
    • 2003
  • The transformer is major equipment in power receiving and substation facilities. Necessary conditions required for the transformer are compactness, lightness, high reliability, economic advantages, and easy maintenance. The pole-mount transformer installed in distribution system is acting direct role in supply of electric power and it is electric power device should drive for long term. Most of modem transformer are oil-filled transformer and accident is happening considerable. The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. One body molding transformer needs some cooling method because heat radiation between each winding is difficult. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

  • PDF

The study for roof hood structure of G7 power car engine compartment using air flow analysis. (G7 동력차 동력실 유동해석을 통한 루프후드 구조 연구)

  • 박광복;장규호;이동훈
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.634-644
    • /
    • 2000
  • The study was carried out about the roof hood structure of power car for Korean High Speed Train. The compatibility for applied material and volume of hood duct was studied using analysis about heat and flow distributions. The materials and volume of duct were mainly determined by output air temperature and flow rate of each electric blocks. This report was described, which focuses on pressure distribution and air temperature within engine compartment of power car.

  • PDF

Study on the Distribution of Electromagnetic Force for 154 kV Power Transmission Cable on Dual Underground Lines by Normal and Earth Fault Current (지중 2회선 154 kV 송전케이블의 정상 및 지락고장에 따른 전자기력 분포에 관한 연구)

  • Kim, Hui Min;Kim, So Young;Im, Sang Hyeon;Park, Gwan Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • The goal of this study is the size and distribution of the electromagnetic force generated by the current flowing through the second underground line of 154kV power transmission cables by using electromagnetic finite element analysis. So we interpret how mutually electromagnetic force has an effect on the comparable judgement of Trefoil, Duct and Flat, which shows in a numerical arrangement. 154kV OF 1200SQ Cable 1.281km not only is applicable to modeling for underground transmission cable but also examine the effect of line to line, phase to phase and size and direction of the electromagnetic force preparing for the occurrence of normal state and single-phase earth fault, which are arranged in trefoil, duct and flat formation between sections. As showing how the trajectory, and size distribution of the electromagnetic force translate as the arrangement of the cables when a steady-state current and a fault current flows on the underground cables, I hope that when Underground transmission is designed, this data will be useful information.

Development of the Bus Duct Installation System for Wind Tower (풍력타워용 부스덕트 포설시스템 개발)

  • Rhee, Huinam;Lee, Joon Keun;Kim, Bong-Seok;Park, Seong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • A bus duct system for wind tower is introduced. A marine cable has been widely used in wind tower or various offshore structures. However, as the electric load capacity is increases, large number of cable lines must be used to cover the huge amount of electric capacities. Therefore, the installation of the cable lines becomes very difficult due to the heavy weight and volume of the cables. On the other hand, by using a single bus duct system line, the power capacity amount of 16 cables can be delivered with significantly compacted form. However, unlike flexible cables, the bus duct is relatively stiff which could generate the resonance phenomenon in the operating condition of the wind tower. In this study, the vibration characteristics of the bus duct are investigated and its long-term reliability during the life time of the wind tower is verified.

An Experimental and Numerical Study of Corona in a Cage with Sandy and Dusty Flow in High Altitude Area

  • Lv, Yukun;Ge, Zekun;Liu, Yunpeng;Zhu, Lei;Wei, Shaoke
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1726-1733
    • /
    • 2015
  • In order to study the effect of the high-altitude and dusty weather in northwest of China on the corona characteristics of transmission lines, a corona caged based experimental system with sandy and dusty flow condition is numerically investigated and designed. This system overcomes the difficulties caused by harsh environment and offers easy usage for off-site tests. The design parameters are mainly determined by the characteristics of strong sandstorm in northwest region and test requirements. By the comparison of numerical simulation of the particle diffusion in four programs with rectangular or circular air-duct, a practical technology, which introduces swirl to control the particle diffusion length, is obtained. Accordingly, the structure of round air-duct with swirl elbow in inlet and outlet of high level segment is selected as final program. Systems of control and measurement are designed at the same time. Field tuning results show that the test system could ensure the range of sandy and dusty coverage. The wind speed, sandy and dusty concentration could be controlled and meet the requirements of accuracy. The experimental system has many features, such as simple structure, easy to be assembled, disassembled, transported and operated, small space occupied.

CONSIDERATION OF APPLICATION FOR OPTICAL COMPOSITE POWER CABLE (전력/광 복합 케이블의 적용에 대한 고찰)

  • Kim, J.W.;Kim, H.K.;Ha, B.D.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1547-1549
    • /
    • 1994
  • In recent years, fiberoptic technology is becoming indispensable in establishing communication networks due to its low loss, high capacity and non-inductive properties. In the power industry as well, the technology is being required to cable and facility monitering, and control system. But, duct in the manhole and space in the culvert are required to fiberoptic cable that is separated from power cable. Therefore, some cable makers and R&D has been studying the composite fiber/power cables. This report introduces the outline of ABF system, construction and properties of optical composite power cable that used ABF technology.

  • PDF

Behavior of Electric Transmission Tower with Rock Anchor Foundation (암반 앵커기초로 시공된 송전철탑 구조물의 거동특성에 관한 연구)

  • Kim, Kyoung-Yul;Hong, Sung-Yun;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.605-614
    • /
    • 2010
  • In this paper, the initial behavior of transmission tower was analyzed. This tower was firstly constructed by rock anchor foundation in domestic 154 kV transmission line and wireless real-time monitoring system was installed to obtain the measured data for analysis of the structure behavior. For this purpose, 16 strain gauges was installed in anchors of foundation and strain gauges, clinometers, anemoscope and settlement sensors was installed at superstructure. As the results, the main factor which influence the behavior of superstructure is wind velocity, wind direction, rainfall and temperature change. Especially, the uplift load at stub of transmission structure revealed about 35.4 percentages of design load. Hereafter the long term stability will be analyzed.

  • PDF

Effect of compact HTS superconduction 7ower cable and evaluation of its economical efficiency (컴퍽트형 고온 초전도 전력 케이블의 기대 효과와 경제성 평가)

  • 최상봉;성기철;조건욱;정성환;김대경;김학만;전영환
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.10-14
    • /
    • 2001
  • This paper presents the possible application of a HTS superconducting power cable fro transmitting electric power in metropolitan areas, reflecting its important distinction such as compactness for installation in underground ducts and considerable efficiency improvement comparable to present underground cables. In this paper, we investigated characteristic and market scale compact HTS transmission cable which is possible to install in under-ground ducts. and reviewed its economical efficiency comparing to present existed CV cable construction and duct or tunnel installation.

  • PDF