• Title/Summary/Keyword: Electric field density

Search Result 581, Processing Time 0.033 seconds

An Analysis of Electric-field Density into Mountain Area Using DTED (디지털 지도를 이용한 산악지형의 전계강도 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Park, Young-Chul;Kim, Min-Nyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.852-857
    • /
    • 2006
  • This paper presents a precision method to calculate the electric field density of mountain area using digital terrain elevation data(DTED). Generally we calculate the electric field density of a point adding a direct field density and horizontal reflection field density between two points. In this paper, we consider a vertical reflection field density from vertical surface near the wave propagation line between transmitter and receiver. The vertical reflection electric field have different propagation path and polarization from a horizontal reflection field. And the total electric field density adding horizontal field density and vertical reflection value is more accurate than a direct path electrical field density or direct field density adding a horizontal reflection field density.

  • PDF

The Measurement of Electromagnetic Wave in Power Cable Tunnel of Underground Utility Tunnel (전력구 내 전자기파에 대한 작업 환경 측정)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Electromagnetic measurements of the power cable tunnel were conducted from August 10 to 20, 2018, in the ${\bigcirc}{\bigcirc}$ city underground utility tunnel. During this period, the average temperature was $31.89^{\circ}C$ and the humidity was 67.56% in power cable tunnel. As a result of the electromagnetic measurement, the highest electric field was 25.3 V/m and the magnetic flux density was $42.6{\mu}T$. The average electric field was 18.56 V/m and the magnetic flux density was $29.32{\mu}T$ in the power cable tunnel. As a result of comparison with the electric equipment technical standard, the electric field in the power cable tunnel was 0.5% of the electric equipment standard and 35.2% of the magnetic flux density. It's similar value that electric field is about robotic vacuum(15.53 V/m), and magnetic flux density is similar value about capsule- type coffee machine ($23.07{\mu}T$). The number of cable lines and the size of the electromagnetic waves were not proportional to each other through comparison of cable lines in the power cable tunnel. It was confirmed that 154 kV, rather than 22.9 kV, could have a greater influence on occupational.

1-Dimensional Simulation of the Corona Discharge using Fluid Method (유체법을 이용한 코로나 방전의 1차원 수치해석)

  • 이용신;심재학;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.172-176
    • /
    • 1997
  • It is likely that the corona discharge appears due to the motion and the multiplication of electron and ion under the nonuniform electric field. Because the motion and the multiplication of electron and ion are the function of electric field, for the simulation of the corona discharge, we have to calculate the electric field, before the calculation of the motion and the multiplication of electron and ion. In this paper, the electric field is calculated on the assumption that the gap between a hyperboloidal needle and a plane is 1-dimension, and the motion and the multiplication of electron and ion are determined by Flux-Corrected Transport method. For this purpose, we solve the electron and ion continuity equation together with Poisson equation. We calculated the current density and the electron and ion density distributions between electrodes as well as electric field distortion due to the space charge assuming that the discharge channel radius is 100${\mu}{\textrm}{m}$. In this simulation, it is found that the current density has one peak as observed by experiment, and electric field distortion is important to the formation and the stability of the corona discharge.

  • PDF

Numerical Calculation Study on the Generalized Electron Emission Phenomenon

  • Kim, Hee-Tae;Yu, Soon-Jae
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.158-163
    • /
    • 2009
  • There are two kinds of well-known electron emissions from metal: field and thermionic emission. For thermionic emission, electrons come out of a metal due to the thermal energy, whereas for field emission, electrons tunnel out of a metal through the strong electric field. In this study, the most general electron emission caused by the temperature and electric field with a free electron gas model was considered. The total current density of electron emission comes from the field emission effect, where the electron energy is lower than vacuum, and from the thermionic-emission effect, where the electron energy is higher than vacuum. The total current density of electron emission is shown as a function of the temperature for a constant electric field, and as a function of the electric field for a constant temperature.

Analysis on Induced Current Density by Electric Field of Human under the 765 kV Transmission Line Considering Permittivity and Conductivity (유전율 및 도전율을 고려한 765kV 송전선하의 전계에 의한 인체내부 유도 전류밀도 해석)

  • 민석원;송기현;양광호;주문노
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.461-465
    • /
    • 2004
  • This paper analysed the induced current density by electric field of human body under the 765 kV transmission line considering permittivity and conductivity. As permittivity of human body is very high as $10^6$ at 60 Hz, special numerical computation technique in Surface Charge Method(SCM) for composite media with extremely different properties is applied to reduce calculation error of induced current density and electric field inside the human body. Calculation results show that the average of the induced current density inside human body is about 3mA/$m^2$, which is less than ICNIRP criterion (10mA/$m^2$).

Properties of Field Emission Electrons for CVD-grown Carbon Nanotubes (CVD법으로 제조한 탄소 나노튜브의 전계 전자 방출 특성)

  • Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.424-428
    • /
    • 2003
  • The microstructure and field emission properties of carbon nanotubes(CNT) grown by Ni-catalytic chemical vapor deposition(CVD) were investigated. CVD-grown CNT had a high density of curved shape with randomly oriented. It was found that an increase in electric field caused an increase in field emission current and field emission sites of CNT. The maximum field emission current density was measured to be 3.6 ㎃/$\textrm{cm}^2$ at 2.5 V/$\mu\textrm{m}$, while the brightness of 56 cd/$\textrm{cm}^2$ was observed for the CNT-grown area of 0.8 $\textrm{cm}^2$ from a phosphor screen. Field emission current at constant electric field gradually decreased initially and then stabilized with time.

Electric conduction properties of low density Polyethylene film for Power cable (전력케이블용 저밀도폴리에틸렌박막의 전기전도특성)

  • 황종국;홍능표;이용우;소병문;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.143-146
    • /
    • 1994
  • In older to investigate the properties of electric conduction in low density polyethylene(LDPE) for power cable, the thickness of specimen was the 30, 100($\mu\textrm{m}$) of LDPE. The experimental condition for conductive properties was measured until the breakdown occurs at temperature ranges from 30 to 110[$^{\circ}C$] and in the electric field of 1 to 5 ${\times}$10$^2$[Mv/m]. As for increase of temperature, the current density of LDPE was increased with constant ratio in low field, but changes with exponential function in high field. The tunnel current of pre-breakdown region is shifted toward low field as much as thermal excitation energy.

A study on the fabrication and electric conduction characteristics of Hexamethyldisiloxane thin films by plasma polymerization method (플라즈마중합법에 의한 헥사매틸디실록산 박막의 제조 및 전기전도특성)

  • Park, J.K.;Lee, S.H.;Lee, D.C.;Cho, S.W.;Woo, H.H.;Lee, J.T.;Kim, B.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1168-1170
    • /
    • 1995
  • The purpose of this thesis is to fabricate the hexamethyldisiloxane thin film by plasma polymerization method, and to investigate the electric conduction characteristics of plasma polymerized thin film. Current density was measured in being changed annealing temperature(room temperature${\sim}125[^{\circ}C]$) and electric field intensity($10^5{\sim}1.2{\times}10^6$[V/cm]). The current density of thin films fabricated at discharge power of $30{\sim}90$[W] showed $1.3{\times}10^{-11}{\sim}3.1{\times}10^{-12}[A/cm^2]$ after 10 minutes of permission of electric field. The current density increased gradually with increasing of annealing temperature and electric field intensity. The electric conduction type of thin films fabricated in discharge power of 90[W] agreed with Schottky type.

  • PDF

The Effect of Compressing ER Electrode on Electrorheological Properties of Anhydrous ER Fluids (ER 유체용 압축전극이 ER 유체의 전기유변학적 특성에 미치는 영향)

  • Ahn, Byeng-Gil
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2002
  • For increasing the yield stress of ER fluids, the compressing ER electrode was developed and the compressing electrorheological (ER) behavior of anhydrous ER fluids in silicone oil of phosphorous ester cellulose powder was investigated. Under constant electric field, not only the current density but also the yield stress of anhydrous ER fluids were studied as varying the compressing length of ER electrode distance. From the experimental results the compressing of ER electrode had a large influence to the ER properties of anhydrous ER fluids. The current density was proportional to the compressing length of ER electrode under constant electric field and volume fraction also tile compressing yield stress was proportional to the volume fraction of dispersed particles under constant electric field and compressing length. When the ER electrode was compressed with 150mm after charging the electric field, 4 kV, tile yield stress of phosphoric ester cellulose ER fluids increased to thirteen times comparing with the yield stress measured at normal electrode.

The Effect of Compressing ER Electrode on the Electrorheological Properties of ER Fluids (ER 유체용 압축전극이 ER 유체의 전기유변학적 특성에 미치는 영향)

  • 안병길
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.138-145
    • /
    • 2001
  • For increasing the yield stress of ER fluids, the compressing ER electrode was developed and the compressing electrorheological (ER) behavior of anhydrous ER fluids in silicone oil of phosphorous ester cellulose powder was investigated. Under constant electric field, not only the current density but also the yield stress of anhydrous ER fluids were studied as varying the compressing length of compressing ER electrode. From the experimental results, the compressing of ER electrode had a large influence to the ER properties of anhydrous ER fluids. The current density was proportional to the compressing length of ER electrode under constant electric field and volume fraction also the compressing yield stress was proportional to the volume fraction of dispersed particles under constant electric field and compressing length. When the ER electrode was compressed with 150mm after charging the electric field, 4 kV, the yield stress of phosphoric ester cellulose ER fluids increased to thirteen times comparing with the yield stress measured at normal electrode.

  • PDF