• Title/Summary/Keyword: Electric field calculation

Search Result 192, Processing Time 0.033 seconds

Analytical Calculation for the Breakdown Voltage of the Punchthrough Diode with Cylindrical Junction Edge (원통형 접합경계를 갖는 punchthrough 다이오드의 항복전압에 대한 해석적 계산)

  • Kim, Doo-Young;Kim, Han-Soo;Choi, Yearn-Ik;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1448-1450
    • /
    • 1994
  • The breakdown voltages of punchthrough-mode diodes with cylindrical junction are analytically calculated, The proposed method, which is based on th Gauss's law, estimates the lateral expansion of the depletion region as well as the electric field and the charge distribution. The proposed method is given in terms of epitaxial layer width, the epitaxial layer doping concentration, and curvature radius of the junction edge. The calculation results agree well with the MEDICI simulation results for various device parameters.

  • PDF

Measurement of the Magnetization Loss in a HTS Tape (고온초전도선재의 자화손실 측정)

  • Sim, Jeong-Uk;Lee, Hui-Jun;Cha, Gwi-Su;Lee, Ji-Gwang;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.182-186
    • /
    • 1999
  • Evaluation of the AC losses in the HTS tapes which are used in electric power machines in one of the important topics in this field. This paper deals with the calculation and measurement of the magnetization loss in HTS tapes. Bean model is adopted for the theoretical calculation of the magnetization loss. Magnetization method is used for the measurement of the loss. Two types of the HTS tape model, multi-filamentary model and mono-filamentary model, are used to evaluate the magnetization loss in this paper. According to the results of the analysis, large discrepancy between the calculated and measured value is observed in multi-filamentary model is more useful than multi-filamentary model for the evaluation of the magnetization loss.

  • PDF

A New One Terminal Numerical Algorithm for Adaptive Autoreclosure and Fault Distance Calculation (적응 자동 재폐로 및 고장거리 산정을 위한 새로운 1단자 알고리즘)

  • Zoran Radojevic;Joong-Rin Shin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.438-445
    • /
    • 2004
  • This paper presents a new numerical spectral domain algorithm devoted to blocking unsuccessful automatic reclosing onto permanent faults and fault distance calculation. Arc voltage amplitude and fault distance are calculated from the fundamental and third harmonics of the terminal voltages and currents phasors. From the calculated arc voltage amplitude it can be concluded if the fault is transient arcing fault or permanent arcless fault. If the fault is permanent automatic reclosure should be blocked. The algorithm can be applied for adaptive autoreclosure, distance protection, and fault location. The results of algorithm testing through computer simulation and real field record are given.

A Fast Computation Method of Far Field Interactions in CBFM for Electromagnetic Analysis of Large Structures (임의 대형구조 전자기 해석을 위한 CBFM의 빠른 원거리 상호 작용 계산 알고리즘)

  • Park, Chan-Sun;Hong, Ic-Pyo;Kwon, Obum;Kim, Yoon-Jae;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.701-706
    • /
    • 2018
  • The characteristic basis function method, or CFBM, is one of the representative electromagnetic methods widely used today. In this paper, we propose an accelerating algorithm for the far field interaction calculation of CBFM, to efficiently analyze the electromagnetic characteristics of arbitrarily large structures. To effectively analyze the electromagnetic characteristics of a large structure, it is essential to shorten the computation time. In the CBFM analysis method, the complexity can be greatly reduced by using approximations created via the multipole expansion method. The new algorithm proposed in this paper is applied to the computation of radar cross sections of conductor spheres and fighter aircraft, and it is confirmed that calculation time is reduced by 34 % and 74 %, respectively, without loss of accuracy compared with existing CBFM.

Neutralization and Ionization of movable ion at insulator-metal interface (절연체-금속계면에서 가동이온의 중성화와 이온화)

  • 이성길;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.33-35
    • /
    • 1988
  • From the study of mechanism of electrical conduction of film which is made from Polyethylene Terephthalate at very high temperature which is larger than low electric field and glass transition point, we find that there is a extraordinary non ohmic region (I∝V$^n$, 0

  • PDF

Spin-Motive Force Caused by Vortex Gyration in a Circular Nanodisk with Holes

  • Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.6-9
    • /
    • 2011
  • Spin-motive force has drawn attention because it contains a fundamental physical property. Spin-motive force creates effective electric and magnetic fields in moving magnetization; a vortex is a plausible system for observing the spin-motive force because of the abrupt profile of magnetization. However, the time-averaged value of a spin-motive force becomes zero when a vortex core undergoes gyroscopic motion. By means of micromagnetic simulation, we demonstrates that a non-zero time-averaged electric field induced by spin-motive force under certain conditions. We propose an experimental method of detecting spin-motive force that provides a better understanding of spin transport in ferromagnetic system.

Analysis of the Transversely fed EMC Microstrip Dipole Array Antenna (급전선과 직교된 전자기결합 마이크로스트립 다이폴 배열안테나의 해석)

  • 손영수;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.2
    • /
    • pp.105-116
    • /
    • 1996
  • The design and analysis of the transversely fed EMC(electromagnetically coupled) microstrip dipole have been accomplished by using the integral equation and MOM(method of moment)in frequency domain in order to find the current distribution of the dipole. In this study, we proposed the possibilities for design and analysis of EMC micro-strip dipole array antenna by means of calculating the current distribution of each dipole directly using the FDTD(finite difference time domain) method. In this case, we applied the formulation which is the finite difference expression of the Maxwell's integral equation. From the current distribution of each dipole, we calculated the far field electric component and showed that the calculation process and running time was reduced with respect to the method which calculates the radiation field with surface electric and magnetic current density.

  • PDF

Optimal Design of Electric Field Driven Liquid Crystal Fresnel Lens Using Taguchi's Method (다구찌 실험계획법을 이용한 액정 전계 프레넬 렌즈의 최적 설계)

  • Kim, Bong-Sik;Kim, Jong-Woon;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • A rigorous electro-optical simulation and ray tracing for an electric field driven liquid crystal Fresnel lens was proposed to obtain design parameters of the electrode pattern of the Fresnel lens. The optimal design was carried out using Taguchi's experimental method for 17.1"($368{\times}229.5$ mm) wide LCD panels with 9 views. For the calculation of the distribution of liquid crystal molecules and the optical transmission of the panel, finite difference method and extended Jones matrix method were used to deal effectively with highly nonlinear and complicated motional equations of the liquid crystal molecules and to obtain the oblique transmission characteristics of the LCD panel. As simulation results, the optimal lengths of the 3 electrodes of the Fresnel lens are 4.0 ${\mu}m$, 30 ${\mu}m$ and 83 ${\mu}m$, respectively, and the locations of the second and third electrodes are 32.9-33.0 ${\mu}m$ and 45.9-46.0 ${\mu}m$, respectively. The optimal applied voltage of the 3 electrodes are found to be 5.75 V, 7.80 V and 11.9 V, respectively.

Development of an Electrical Capacitance Tomography Code for Analysis of Two-Phase Flow in the Rectangular Pipe (사각관 이상유동 분석을 위한 전기적 캐패시턴스 토모그라피 코드 개발)

  • Lee, Kyoung-Hwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.87-94
    • /
    • 2005
  • A computer code for Electrical Capacitance Tomography (ECT) is developed to sense the cross sectional phase distribution of two-phase flow in the rectangular pipe in which the tomography sensor furnished by the insulated wall, electrodes, and electric field screen. The computer code had two steps for the image reconstruction. In the forward projection step, the sensitivity matrix was constructed based on the electric field calculated by the finite difference method. In the backward projection step, the sensitivity matrix and the measured capacitances were used to reconstruct the cross sectional image. Several algorithms including LBP, TR, ITR, and PLI were employed to find the proper one for the two-phase flow analysis. Since the dielectric constant of the water in two-phase flow is sensitive to the thermal parameter such as, temperature and pressure, the developed code was evaluated to find their accuracy, speed of calculation, and sensitivity to the variation of the dielectric constant. It was found that the iterative methods are superior to the direct methods for the image reconstruction, and the PLI method was the best in the variation of the dielectric constants.

Laser Thomson Scattering Measurements and Modelling on the Electron Behavior in a Magnetic Neutral Loop Discharge Plasma

  • Sung, Youl-Moon;Kim, Hee-Je;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.107-112
    • /
    • 2001
  • Laser Thomson scattering measurements of electrom temperature and density in a neutral loop discharge (NLD) plasma were performed in order to reveal the electron behavior around the neutral loop (NL). The experimental results were examined by using a simulation model that included effects of a three dimensional electromagnetic field with spatial decay of the RF electric field, and the limitation of the spatial extent of the electron motion and collision effect. From the experiments and modeling of the electron behavior, it was found that NLD plasma posses the electron temeprature $T_{e}$ and density ne peaks around the NL is essential for the formation of plasma. Also, the optimum condition of plasma production could be simply estimated by the calculation of $U_{av}$ and $F_{0}$././.

  • PDF