• Title/Summary/Keyword: Electric device

Search Result 1,824, Processing Time 0.038 seconds

Flexible Ultra-high Gas Barrier Substrate for Organic Electronics

  • Yan, Min;Erlat, Ahmet Gun;Zhao, Ri-An;Scherer, Brian;Jones, Cheryl;Smith, David J.;McConnelee, Paul A.;Feist, Thomas;Duggal, Anil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.445-446
    • /
    • 2007
  • The use of plastic substrates enables new applications, such as flexible display devices, and other flexible electronic devices, using low cost, rollto-roll (R2R) fabrication technologies. One of the limitations of polymeric substrate in these applications is that oxygen and moisture rapidly diffuse through the material and subsequently degrade the electro-optical devices. GE Global Research (GEGR) has developed a plastic substrate technology comprised of a superior high-heat polycarbonate (LEXAN(R)) substrate film and a unique transparent coating package that provides the ultrahigh barrier (UHB) to moisture and oxygen, chemical resistance to solvents used in device fabrications, and a high performance transparent conductor. This article describes the coating solutions for polycarbonate (LEXAN(R)) films and its compatibility with OLED device fabrication processes.

  • PDF

An Active Damping Device for a Distributed Power System (전력시스템을 위한 Active Damping Device)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Distributed power systems (DPSs) has been widely used various industrial/military applications due to their various advantages. Furthermore, the "All electric" concept, in conjunction with DC DPS, appears to be more advanced and mature in the AEV(All-Electric Vehicular) industry. Generally, AEV carry many loads with varied functions. However, there may be large pulsed loads with short duty ratios which can affect the normal operation of other loads. In this paper, a converter with spilt capacitors and a simple adaptive controller is proposed as a active damping device to mitigate the voltage transients on the bus. The proposed converter allows the smaller capacitive storage. In addition, the proposed control approach has the advantage of requiring only one sensor and performing both the functions of mitigating the voltage bus transients and maintaining the level of energy stored. The control algorithm has been implemented on a TMS320F2812 Digital Signal Processor (DSP). Simulation and experimental results are presented which verify the proposed control principle and demonstrate the practicality of the circuit topology.

A study for the overload and fault protective device of pole transformers (주상변압기 과부하 및 고장보호장치 개발에 관한연구)

  • Choi, Bong-Il;Lim, Chang-Ho;Kim, Chang-Kyung;Kim, Young-Rae;Song, Il-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.67-69
    • /
    • 1992
  • This paper presents the new protective device which is developed specifically for use in oil filled distribution transformers. This device is mounted Inside of the transformer and connected between the secondary winding and the secondary bushings. It provides both fault and overload protection to the transformer, and visual warning of the existence of uneconomical loading conditions. It Is available in thermal/magnetic operating device depending upon fault duty required.

  • PDF

A Study on Displacement Current Characteristics of DMPC Monolayer (II) (DMPC 인지질 단분자막의 변위전류 특성 연구 (II))

  • Song, Jin-Won;Lee, Kyung-Sup;Choi, Yong-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.343-348
    • /
    • 2007
  • The physical properties of DMPC monolayer were made for dielectric relaxation phenomena by the detection of the surface pressures and displacements current. Lipid thin films were deposited by accumulation and the current was measured after the electric bias across the manufactured MIM device. It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area. When electric bias is applied across the manufactured MIM device by the deposition condition of phospolipid mono-layer, it wasn't breakdown when the higher electric field to impress by increase of deposition layers.

The Battery Charger System for Electric Bicycle using Photovoltaic Power (태양광 발전을 이용한 전기자전거용 배터리 충전장치)

  • Won, Dong-Jo;Lee, Joo-Hyuk;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.53-56
    • /
    • 2008
  • In this paper, we propose the battery charging device for electric bicycle using photovoltaic power. DC voltage from the solar cells is low, it needs to be step-up by the power conversion device. The power conversion device applied to this paper is phase-shift full-bridge converter. This converter steps-up from 12${\sim}$22[Vdc] to 36[Vdc] for charging the battery of electric bicycle. Phase-shift full-bridge converter(PSFB) can obtain twice as much DC voltage compared with half-bridge converter, thus it has lower current stress less than half-bridge converter. It is simulated and tested the battery charging device using photovoltaic power.

  • PDF

Electrical Characteristics of (BaSr)TiO3-based PTCR Devices under the Electric Field

  • Lee, Joon-Hyung;Cho, Sang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.16-20
    • /
    • 2002
  • Semiconducting (Ba.Sr)TiO$_3$ceramic device, which shows the PTCR effect, has been usually used as a current limiter. In this case, the device should endure the condition under the high electric field. In this study, the dynamic electrical properties of the PTCR device under high voltage has been evaluated. Two different formulated powders were used and the sintered bodies exhibited the different grain size and porosity. The wide range of characterization such as complex impedance spectroscopy, microstructure, I-V characteristics and voltage dependence of resistivity of the samples were performed. The PTCR effect of the specimen containing coarse grains was very sensitively dependent on the AC electric field, showing that it was inversely pro-portional to the grain boundary potential barrier. The withstanding voltage was proportional to the potential barrier of grain boundary.

Study on the Electrical Conduction Mechanism of Organic Light-Emitting Diodes (OLEDs) (유기발광소자(OLED)의 전기전도메커니즘에 대한 고찰)

  • Lee, Won Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.6-10
    • /
    • 2018
  • Organic light emitting devices have attracted the attention of many people because of their high potential for self-emission and flexible display devices. However, due to limitations in device efficiency and lifetime, partial commercialization is underway. In this paper, we have investigated the electrical conduction mechanism of the organic light emitting device by the temperature and the thickness of the light emitting layer through the current - voltage characteristics with respect to the conduction mechanism directly affecting the efficiency and lifetime of the organic light emitting device. Through the study, it was found that the conduction in the low electric field region is caused by the movement of the heat excited charge in the ohmic region and the tunneling of the electric charge due to the high electric field in the high electric field region.

A Study on the Development of a Real-time Energy Metering Device for Electric Railway Vehicles (전기철도차량 운행에너지 실시간 계측을 위한 에너지 미터링 장치 개발에 관한 연구)

  • Kim, Yong Ki;Han, Moon Seob;Chun, Yoon-Young;Bae, Chang Han;Yun, Byeong Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.689-694
    • /
    • 2016
  • The objective of this study is to identify the requirements for a energy metering device and develop a real-time energy metering device for measuring energy (electricity) consumption of the electric railway vehicle during its operation. The study also evaluated the performance of the AC voltage sensor, current sensor, and data meter for the device and performed EMC tests such as surge and EFT (Burst). The performance tests showed that the percent errors of the AC voltage sensor and current sensor were ${\leq}0.1%$, and ${\leq}0.5%$ under 10~127V, and 10~250A, respectively. The result of surge and EFT (Burst) tests also indicated that the device had no malfunction in any wave (combination and ring waves) under the treat level with 2kV. The result of the field test also confirmed that the device had no malfunction in data metering.

A Study on Electrical Fire Disaster Prevention Device used in Double Circuit Break (고정밀 전류센서를 이용한 이중 차단용 전기화재 방재장치에 관한 연구)

  • Park, Dong-Pil;Kwak, Dong-Kurl;Jung, Do-Young;Kim, Choon-Sam;Shin, Ho-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2102-2103
    • /
    • 2008
  • The major causes of electrical fire are classified to short circuit fault, overload fault, electric leakage and electric contact failure. The occurrence factor of the fire is electric arc or spark accompanied with electrical faults. Residual Current Protective Device(RCD) of high sensitivity type used at low voltage wiring cuts off earth leakage and overload, but the RCD can't cut off electric arc or spark to be a major factor of electrical fire. As the RCDs which are applied low voltage distribution panel are prescribed to rated breaking time about 30[ms](KS C 4613), the RCDs can't perceive to the periodic electric arc or spark of more short wavelength level. To be improved on such problem, this paper is proposed to a electrical fire disaster prevention device(EFDPD) for a RCD trip or a self circuit-breaking function on electric arc or spark due to electrical fire. Some experimental results of the proposed apparatus is confirmed to the validity of the analytical results.

  • PDF

Fault Diagnosis Device for Fire Prevention of the Resistance Heating Type three-Phase Electric Heater (3상 저항가열식 전기히터의 화재예방을 위한 결함 진단장치)

  • Lee, Mun-Hyung;Kim, Chan-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1669-1674
    • /
    • 2017
  • In this study, We have discussed the development of a diagnostic device to detect and prevent electrical fire due to the arc caused by contact failure and partial disconnection at the connection part of the three-phase electric heater wiring used in the industrial field. The arc caused by contact failure and partial disconnection at the connection part of the electric heater shows a change in the current effective value. Therefore, it is possible to determine whether there exists a defect by analyzing the current unbalance factor and the number of current fluctuations with the diagnostic apparatus. The three-phase unbalanced heater is considered to be capable of determining defects through periodic measurement and trend analysis of the current unbalance factor. It is also expected that this device can be used not only for electric heaters but also for detection of defects in wiring and connections of electrical equipment having a characteristic of constant load current.