• 제목/요약/키워드: Electric and Mechanical work

검색결과 173건 처리시간 0.028초

조선소의 대형블록 용접을 위한 인력 운반형 용접로봇 개발 (Development of a Portable Welding Robot for Welding Jobs in Ship Blocks)

  • 박주이;김진욱;김정민;김지윤;김웅지;김수호
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.760-766
    • /
    • 2014
  • This paper represents a portable robot for use in the welding process of the double hulls in shipbuilding yards. It has 5 degrees of freedom and 3kg of payload. Its body weight is 17.3 [kg] so that human workers can carry it by hand to the work place. Its body is mainly made of magnesium and aluminum alloys. Since the robot is placed about 25m apart from its controller, EtherCAT is adopted for reliable connection between the robot and controller through a single light cable. RTX real-time kernel and KPA EtherCAT master are used to control the robot on a Windows XP environment. The performance of the developed robot is satisfactory to the requirement in welding tasks of U-type cells in shipbuilding yards.

Smart analysis of doubly curved piezoelectric nano shells: Electrical and mechanical buckling analysis

  • Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.471-486
    • /
    • 2020
  • Stability analysis of three-layered piezoelectric doubly curved nano shell with accounting size dependency is performed in this paper based on first order shear deformation theory and curvilinear coordinate system relations. The elastic core is integrated with sensor and actuator layers subjected to applied electric potentials. The principle of virtual work is employed for derivation of governing equations of stability. The critical electrical and mechanical buckling loads are evaluated in terms of important parameters of the problem such as size-dependent parameter, two principle angle of doubly curved shell and two parameters of Pasternak's foundation. One can conclude that mechanical buckling loads are decreased with increase of nonlocal parameter while the electrical buckling loads are increased.

전기유변유체를 동작매체로 하는 실험용 토크 전달장치 제작 및 성능평가 (Construction and Evaluation of an Experimental Type Torque Converter by Adapting an Electrorheological Fluid as an Operating Medium)

  • 김상국;정동운;최윤대
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2706-2711
    • /
    • 1994
  • In this work, an experimental type of torque converter has been constructed and its characteristics have been evaluated by adapting an electrorheological fluid(ERF) as an operating medium. The device was designed by using the equations which were proposed by Carlson et al. The correlation between the rheological behaviour of an ERF and mechanical parameters of the clutch has been investigated. The torque generated by an ERF in this device is sum of one due to the yield strength by polarizing dispersed particles in dielectric oil and one due to the viscous drag. The experimental results are presented in terms of torque and current density as a function of rotational speed at various electric field strength applied. Experimental results showed that the measured torque was rapidly increased with the increase of the electric field, generally being proportional to the rotational speed of the motor. The measured current was shown to be increased with the increased electric field. Also, the current was decreased with the increase of increased with the increased electric field. Also, the current was decreased with the increase of the rotational speed of the motor and reached plateau region after f = 5 Hz.

Finite Element Analysis of Electric Field Properties in Gas Electron Multipliers

  • Cho, Min-Kook;Cheong, Min-Ho;Hwang, Sung-Jin;Ko, Jong-Soo;Cho, Hyo-Sung;Kim, Ho-Kyung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2004년도 추계학술발표회 발표논문집
    • /
    • pp.1143-1144
    • /
    • 2004
  • In this study, we analyze electric field properties in the GEM by using a finite element method. Compared with 3D simulation, modeling of the GEM in 2D rz coordinates is very efficient because of exact simulation results and much saved computational time. The ECE, which is an important measure designating the GEM performance, is estimated by calculating the fractional field-line transparencies. The ECE for various GEM structures and operational parameters are investigated and the results will be presented. This simulation work is very useful for the better design of the GEM.

  • PDF

전기 피드백 직동형 서보 밸브에 관한 역 분석 (Reverse Analysis on a Direct Dive Servo Valve with Electric Feedback)

  • 김성동;안희욱
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권4호
    • /
    • pp.22-28
    • /
    • 2013
  • Mechanical and electrical properties of a DDV(Direct Drive servo Valve) with electric feedback are analysed via reverse analysis technique in this work. The DDV is disassembled and mechanical parameters, such as spool mass, spring stiffness and port size are identified. The servo amplifier, which is built in the valve, is reversely analysed and the control scheme and gains for several control actions are also identified. The electrical feedback for spool displacement improves much better the valve performance, such as hysteresis and dynamic bandwidth frequency, than an ordinary mechanical feedback valve. Integrating control action with very large gain was adopted in the valve amplifier, and it seemed to give high performance.

전기적 피로하중을 받는 압전 작동기의 손상 메커니즘 (Damage Mechanisms of a Piezoelectric Actuator under Electric Fatigue Loading)

  • 우성충;구남서
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.856-865
    • /
    • 2008
  • Damage mechanisms in bending piezoelectric actuators under electric fatigue loading are addressed in this work with the aid of an acoustic emission (AE) technique. Electric cyclic fatigue tests have been performed up to $10^7$ cycles on the fabricated bending piezoelectric actuators. An applied electric loading range is from -6 kV/cm to +6 kV/cm, which is below the coercive field strength of the PZT ceramic. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate and amplitude are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZ inner layer, thereby degrading the displacement performance. However, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to $10^7$ cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

Effects of Graphenes/CNTs Co-reinforcement on Electrical and Mechanical Properties of HDPE Matrix Nanocomposites

  • Kim, Byung-Joo;Byun, Joon-Hyung;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2261-2264
    • /
    • 2010
  • In this work, mechanical and electrical properties of graphenes (GP)/carbon nanotubes (CNTs) co-reinforced high density polyethylene (HDPE) matrix composites were studied. The microstructure, morphologies, and electric properties of the composites were evaluated by XRD, TEM, and 4-probe methods, respectively. It was found that the electric resistivity of 0.5 wt %-GP/HDPE was immeasurable, and 2.0 wt %-CNTs/HDPE showed high resistivity ($6.02{\times}10^4{\Omega}{\cdot}cm$). Meanwhile, GP (0.5 wt %)/CNTs (2.0 wt %)/HDPE showed excellent low resistivity ($3.1{\times}10^2{\Omega}{\cdot}cm$). This result indicates that the co-reinforcement systems can dramatically decrease electric resistivity of the carbon/polymer nanocomposites.

Design and Experimental Evaluation of a Robust Force Controller for a 6-Link Electro-Hydraulic Manipulator via H$_{\infty}$ Control Theory

  • Ahn, Kyoung-Kwan;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.999-1010
    • /
    • 2003
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. This maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulators because hydraulic manipulators have the advantage of electric insulation and power/mass density. Meanwhile an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this paper, the robust force control of a 6-link electro-hydraulic manipulator system used in the real maintenance task of active electric lines is examined in detail. A nominal model for the system is obtained from experimental frequency responses of the system, and the deviation of the manipulator system from the nominal model is derived by a multiplicative uncertainty. Robust disturbance observers for force control are designed using this information in an H$\_$$\infty$/ framework, and implemented on the two different setups. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved even if the stiffness of environment and the shape of wall change.

Looseness Estimation of Bolts on Truss Structure with PZT Patches

  • Jiang, Zhongwei;Akeuchi, Yasutaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.86.6-86
    • /
    • 2002
  • This work presents a study on development of a practical and quantitative technique for assessment of the healthy state of a structure by piezoelectric impedance-based technique associated with longitudinal wave propagation measuring method. A truss structure embedded with piezoelectric patches is investigated for a fundamental study on estimation of the looseness of bolts in the joint. In order to evaluate the minute mechanical impedance change due to loosening bolt, a harmonic longitudinal elastic wave is applied to the structure by a pair of PZT patches and their electric impedance is measured simultaneously. According to the experimental results, the change of the electric impedance of P...

  • PDF

Multi-Domain Model for Electric Traction Drives Using Bond Graphs

  • Silva, Luis I.;De La Barrera, Pablo M.;De Angelo, Cristian H.;Aguilera, Facundo;Garcia, Guillermo O.
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.439-448
    • /
    • 2011
  • In this work the Multi-Domain model of an electric vehicle is developed. The electric domain model consists on the traction drive and allows including faults associated with stator winding. The thermal model is based on a spatial discretization. It receives the power dissipated in the electric domain, it interacts with the environment and provides the temperature distribution in the induction motor. The mechanical model is a half vehicle model. Given that all models are obtained using the same approach (Bond Graph) their integration becomes straightforward. This complete model allows simulating the whole system dynamics and the analysis of electrical/mechanical/thermal interaction. First, experimental results are aimed to validate the proposed model. Then, simulation results illustrate the interaction between the different domains and highlight the capability of including faults.