• Title/Summary/Keyword: Electric Water Pump

Search Result 134, Processing Time 0.023 seconds

A Study on Thermo-flow Characteristics Analysis of Electric Water Pump (전동 워터펌프의 열유동 특성 해석에 관한 연구)

  • Kim, Sung-Chul;Song, Hyeong-Geun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.95-101
    • /
    • 2012
  • An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. The canned type electric water pump without mechanical sealing elements was selected to meet the requirements for operational reliability and life. However, the electric water pump for internal combustion engine generates much more heat loss than for hybrid electric vehicle since it is operated by the electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump as an inverter integrated water pump has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of $125^{\circ}C$, water pump speed of 6000 rpm, coolant temperature of $106^{\circ}C$ and coolant flow rate of 120 L/min was used as a standard condition. Therefore, flow fields and temperature distribution inside the water pump were obtained. Also, we checked the feasibility of the canned type for the electric water pump in comparison with the mechanical seal type.

Analysis on Cascade Cycle Heat Pump Application as Night Storage Heater (심야전력을 이용한 Cascade Heat Pump Cycle의 운전결과 분석)

  • JUNG, H.;HWANG, S.W.;LEE, C.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.113-118
    • /
    • 2011
  • To analyze and verify the effect of replacing thermal storage heater by a cascade cycle heat pump using midnight electricity was installed and tested at a customer's house in Wonju, Korea. The electric night storage heater is consist of 30kW electric heater and 2,700 liters of thermal storage water tank to supply hot water for warming house floor. The power for electric heater was cut off and hot water was only generated by cascade cycle heat pump. Current thermal storage water tank was not eliminated and electric heater wiring was modified. Some operation logic of the heat pump was also modified for proper operation. The required capacity of the heat pump and hot water temperature for given warming condition were estimated. The estimated capacity of heat pump was about 19kW and estimated hot water temperature for proper heating was at least $75^{\circ}C$.

Failure Analysis of Circulating Water Pump Shaft in Power Plant (발전 계획에서 순환 물 펌프 고장 분석)

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.125-128
    • /
    • 2021
  • This paper presents the root cause failure analysis of the circulating water pump in the 560 MW thermal power plant. A fractured austenitic stainless-steel shaft operated for 24 years was examined. Fracture morphology was investigated by micro and macro-fractographic analysis. The metallurgical analyses including chemical analysis, metallography and hardness testing were performed. The analysis reveals that the pump shaft was fractured due to the reverse bending load with combination of rotating bending load. Corrective actions for plant operator was recommended based on the analysis.

An Experimental Study on the Efficiency of the Water Hydraulic Piston Pump System driven by an Electric Inverter (전기 인버터 구동 수압 피스톤 펌프 시스템의 효율 성능에 관한 실험적 연구)

  • Ham, Y.B.;Park, J.H.;Kim, S.D.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • A water hydraulic pump is likely to have serious problems of high leakage, friction and low energy efficiency. A water hydraulic pump has commonly a fixed displacement type and its outlet flow is adjusted by controlling rotation speed of the pump, which can be implemented by using an electric inverter. This study aims to investigate energy efficiency of the water hydraulic pump system which is driven by an electric inverter. The study is based on the experimental results. The pump which is used in the study shows relatively good efficiency and low leakage, low friction as well. The reasons for the good performance of pump is also investigated.

  • PDF

Development of Measurement and Performance Testing System for Heat Pump water Heater (히트펌프 온수기 개발을 위한 계측 및 성능평가시스템 구축)

  • Kwon, Seong-Chul;Yang, Seung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2310-2312
    • /
    • 2004
  • In Korea Electric Power Corporation (or KEPCO), several Demand-Side Management (or DSM) program have been carried out to effectively meet electric power demand at least costs by modifying customers electricity use patterns. As one of them, KEPCO applies low-priced night thermal-storage power service for heat appliances to facilitate efficient use of power facilities by shifting relatively high daytime demands to night hours to build loads during the off-peak periods. In the market of heat-storage type water-heater, electric water-heater has been mostly used, but it has low energy efficiency and needs high capacity electric equipments. So in order to replace these electric water heaters, 15 HP air-source heat pump water heater is developed in Korea Electric Research Institute (or KEPRI). This paper shows that measurement system for performance testing of heat pump water heater is established and heating capacity and performance is analyzed and measured for out-door environmental change.

  • PDF

Thermal analysis model for electric water pumps with non-conductive cooling liquid (비전도성 충진액을 포함하는 전동워터펌프 열 해석 모델)

  • Jung, Sung-Taek;Yoon, Seon-Jhin;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.46-52
    • /
    • 2022
  • As the consumer market in the eco-friendly vehicle industry grows, the demand for water pump in a electric car parts market. This study intend to propose a mathematical model that can verify the effect of improving thermal properties when a non-conductive cooling filler liquid is introduced into an electric vehicle water pump. Also, the pros and cons of the immersion cooling method and future development way were suggested by analyzing the cooling characteristics using on the derived analysis solution. Thermal characteristics analysis of electric water pump applied with non-conductive filler liquid was carried out, and the diffusion boundary condition in the motor body and the boundary condition the inside pump were expressed as a geometric model. As a result of analyzing the temperature change for the heat source of the natural convection method and the heat conduction method, the natural convection method has difficulty in dissipating heat because no decrease in temperature due to heat release was found even after 300 sec. Also, it can be seen that the heat dissipation effect was obtained even though the non-conductive filling liquid was applied at the 120 sec and 180 sec in the heat conduction method. It has proposed to minimize thermal embrittlement and lower motor torque by injecting a non-conductive filler liquid into the motor body and designing a partition wall thickness of 2.5 mm or less.

Electric Water pump Development (전동식 워터펌프 개발)

  • Jung, Se-Young;Kwak, Joong-Hee;Park, Bum-Yong;Jung, Woo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.576-579
    • /
    • 2008
  • The purpose of study is a development of the high reliance electric driven water-pump that fuction is forcing the movement of water using basic design, proto sample and test at the cooling system. It was important to supply a coolant quickly and accurately for the requirement of flow rate at the system when we carried out the designs for BLDC Moter, Controller and water pump(Impeller, Volute Casing, Sealing Device) First, we attained ours purpose that the target efficiency for water pump was over 40% and then we are doing the optimum design for Brushless Motor and Controller that its target is over 55% of efficiency.

  • PDF

Electric Water pump Development (전동식 워터펌프 개발)

  • Jung, Se-Young;Kwak, Joong-Hee;Park, Bum-Yong;Jung, Woo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.217-220
    • /
    • 2007
  • The purpose of study is a development of the high reliance electric driven water-pump that fuction is forcing the movement of water using basic design, proto sample and test at the cooling system. It was important to supply a coolant quickly and accurately for the requirement of flow rate at the system when we carried out the designs for BLDC Motor, Controller and water pump(Impeller, Volute Casing, Sealing Device) First, we attained ours purpose that the target efficiency for water pump was over 40% and then we are doing the optimum design for Brushless Motor and Controller that its target is over 55% of efficiency.

  • PDF

Energy Performance Comparison of Electric Heater and Geothermal Source Heat Pump type Agricultural Hot Air Dryers (전기히터식 및 지열원 히트펌프식 농산물 열풍건조기의 에너지 성능 비교)

  • Yang, Won Suk;Kim, Young Il;Park, Seung Tae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2018
  • Energy performance of electric heater and geothermal source heat pump type hot air dryers are compared in this study. For set temperatures of $30^{\circ}C$, $35^{\circ}C$ and $40^{\circ}C$, radish is dried from initial mass 60 kg until it gets 5 kg, where the difference equals the amount of water removed. As set temperature is increased, drying time is shortened for both electric heater and heat pump types, however energy efficiency is decreased due to increasing electricity consumption. Moisture extraction rate(MER) of electric heater is 2.58~2.84 kg/h, and for heat pump type 2.56~2.71 kg/h, showing little difference between the two types. Specific moisture extraction rate (SMER) of electric heater is 0.94~0.96 kg/kWh, and for heat pump type 1.72~2.21 kg/kWh. SMER of heat pump type is greater by 0.78~1.25 kg/kWh than the electric heater hot air dryer, which is 1.8~2.3 times better in terms of energy efficiency.