• 제목/요약/키워드: Electric Vehicle Charging System

검색결과 202건 처리시간 0.028초

Contactless Power Charger for Light Electric Vehicles Featuring Active Load Matching

  • Jiang, Wei;Xu, Song;Li, Nailu
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.102-110
    • /
    • 2016
  • Contactless power transfer technology is gaining increasing attention in city transportation applications because of its high mobility and flexibility in charging and its commensurate power level with conductive power transfer method. In this study, an inductively coupled contactless charging system for a 48 V light electric vehicle is proposed. Although this study does not focus on system efficiency, the generic problems in an inductively coupled contactless power transfer system without ferromagnetic structure are discussed. An active load matching method is also proposed to control the power transfer on the receiving side through a load matching converter. Small signal modeling and linear control technology are applied to the load matching converter for port voltage regulation, which effectively controls the power flow into the load. A prototype is built, and experiments are conducted to reveal the intrinsic characteristics of a series-series resonant inductive power charger in terms of frequency, air gap length, power flow control, coil misalignment, and efficiency issues.

무선충전 전기자동차 전력공급장치에서의 지락사고 특성 분석 (Analisys about the Earth Fault Characteristics in the Wireless Power Transmission System of the Electric Vehicle)

  • 정진수;한운기;박찬엄;송영상;임현성;조민호;유지연
    • 조명전기설비학회논문지
    • /
    • 제28권12호
    • /
    • pp.13-17
    • /
    • 2014
  • In this paper, the risk of electric shock is analyzed through analysis for characterization of potential distribution analysis and ground fault current analysis near the area where there are occurred a ground fault at electric vehicle wireless charging system using 20kHz. Studies for electric vehicle wireless charging system are in the works for development of efficiency increase, pickup shape design and communication module as a fundamental research step. But the research related to electrical safety and is still scarce state so that more studies are necessary to commercialize. As a result of analysis, it is verified that induced voltage is arisen more up to 45V near the a area of accident during ground fault and fault current has been maintained continuously without clearing fault condition by operating characteristics for circuit breaker and inverter.

PRT 차량의 전력 공급시스템 개발 (A Development of the Electric Power Supply System for PRT Vehicle)

  • 김백현;정락교;정상기;강석원
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.196-200
    • /
    • 2013
  • In this paper, the design of PRT vehicle power supply system is discussed. Since there is no power feeding line facilities in PRT system under development, the PRT vehicle must have its own energy storage device on board. For the energy storage device, ultra-capacitor bank is applied due to its fast charging capability and long life time. Charging the Ultra-capacitor bank is performed by wireless inductive power transfer system. The capacitor bank is charged up in less than 10 seconds when the vehicle is traveling by passenger stations. In this paper the design of the ultra-capacitor bank and the wireless inductive power transfer system for the PRT vehicle are discussed. Tests are conducted for the both system and the result shows the efficiency of the wireless inductive power transfer system is higher than 80%.

무선충전시스템의 충전 제어 방식 (Charging Control of Wireless Charging System)

  • 신한호;허준;전성즙
    • 전력전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.303-309
    • /
    • 2019
  • A hybrid control of a rectifier/regulator of wireless power transfer systems for electric vehicles is studied. A combined rectifier/regulator is used for charging control. The hybrid control comprises integral cycle control and pulse width modulation control to cope with the variations in the induced voltage due to clearance and alignment. The hybrid control has good control capability and does not cause severe switching loss. A 22 kW prototype of the Wireless Power Transfer class 4 charging system defined by the Society of Automotive Engineers is constructed and tested to verify the proposal.

Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building

  • Nguyen, Hung Khanh;Song, Ju Bin
    • Journal of Communications and Networks
    • /
    • 제14권6호
    • /
    • pp.662-671
    • /
    • 2012
  • Plug-in hybrid electric vehicles (PHEVs) will be widely used in future transportation systems to reduce oil fuel consumption. Therefore, the electrical energy demand will be increased due to the charging of a large number of vehicles. Without intelligent control strategies, the charging process can easily overload the electricity grid at peak hours. In this paper, we consider a smart charging and discharging process for multiple PHEVs in a building's garage to optimize the energy consumption profile of the building. We formulate a centralized optimization problem in which the building controller or planner aims to minimize the square Euclidean distance between the instantaneous energy demand and the average demand of the building by controlling the charging and discharging schedules of PHEVs (or 'users'). The PHEVs' batteries will be charged during low-demand periods and discharged during high-demand periods in order to reduce the peak load of the building. In a decentralized system, we design an energy cost-sharing model and apply a non-cooperative approach to formulate an energy charging and discharging scheduling game, in which the players are the users, their strategies are the battery charging and discharging schedules, and the utility function of each user is defined as the negative total energy payment to the building. Based on the game theory setup, we also propose a distributed algorithm in which each PHEV independently selects its best strategy to maximize the utility function. The PHEVs update the building planner with their energy charging and discharging schedules. We also show that the PHEV owners will have an incentive to participate in the energy charging and discharging game. Simulation results verify that the proposed distributed algorithm will minimize the peak load and the total energy cost simultaneously.

Stochastic Modeling of Plug-in Electric Vehicle Distribution in Power Systems

  • Son, Hyeok Jin;Kook, Kyung Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1276-1282
    • /
    • 2013
  • This paper proposes a stochastic modeling of plug-in electric vehicles (PEVs) distribution in power systems, and analyzes the corresponding clustering characteristic. It is essential for power utilities to estimate the PEV charging demand as the penetration level of PEV is expected to increase rapidly in the near future. Although the distribution of PEVs in power systems is the primary factor for estimating the PEV charging demand, the data currently available are statistics related to fuel-driven vehicles and to existing electric demands in power systems. In this paper, we calculate the number of households using electricity at individual ending buses of a power system based on the electric demands. Then, we estimate the number of PEVs per household using the probability density function of PEVs derived from the given statistics about fuel-driven vehicles. Finally, we present the clustering characteristic of the PEV distribution via case studies employing the test systems.

전기자동차 충전스탠드의 제어파일럿 신호를 이용한 대역 내 통신 방식 (Inband Signaling on the Control Pilot of Electric Vehicle Supply Equipment)

  • 김철우;김상범;임유석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.2019-2020
    • /
    • 2011
  • Electric Vehicle Supply Equipment(EVSE) is a system or an equipment to supply electric power for charging the traction batteries on the electric vehicle. Control Pilot is an electric signal generated by EVSE and is transmitted to the electric vehicle by a vehicle coupler and a contact. The duty cycle of control pilot determines the maximum current to be drawn by electric vehicle. When the duty cycle is 5%, it is indicated that digital communication is needed. This paper deals with the data format and definition about communication scheduling through the inband signal on the control pilot of EVSE.

  • PDF

Smart EVs Charging Scheme for Load Leveling Considering ToU Price and Actual Data

  • Kim, Jun-Hyeok;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2017
  • With the current global need for eco-friendly energies, the large scale use of Electric Vehicles (EVs) is predicted. However, the need to frequently charge EVs to an electrical power system involves risks such as rapid increase of demand power. Therefore, in this paper, we propose a practical smart EV charging scheme considering a Time-of-Use (ToU) price to prevent the rapid increase of demand power and provide load leveling function. For a more practical analysis, we conduct simulations based on the actual distribution system and driving patterns in the Republic of Korea. Results show that the proposed method provides a proper load leveling function while preventing a rapid increase of demand power of the system.

EMTP를 이용한 전기자동차용 급속 충전시스템 모델링 (The Modeling of EV Fast Charging System using EMTP)

  • 주성철;심형욱;이제원;김철환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.203-204
    • /
    • 2011
  • There is a growing interest on Electric Vehicles due to global warming and greenhouse gas emission issue. Recently, new technologies of EV fast charging are continually being developed and power supply infrastructure technologies are being developed widely. In general, the fast charging system consists of AC-DC converter, DC-DC converter, and filters. This paper performs modeling of Electric Vehicle fast charging system using EMTP(Electromagnetic transient program).

  • PDF

EV 충전인프라를 위한 국제표준에 부합하는 V2G용 전력선통신모듈 설계 및 응용 (Design and Application of Power Line Communication Module for V2G Conforming with International Standard for Electric Vehicle Charging Infrastructure)

  • 김철수;백수황
    • 한국전자통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1183-1190
    • /
    • 2018
  • 전 세계적으로 환경규제가 지속적으로 강화되고 있으며 이에 효과적으로 대응하기 위해 전기자동차의 도입이 적극적으로 고려되고 있으며, EV 보급의 필수요소인 충전인프라 구축이 필수적이다. 본 논문에서는 스마트한 충전인프라 구축에 필수적인 전력선 통신 기술에 대하여 연구하였다. ISO/IEC 15118 국제표준에 부합한 HPGP규격의 물리계층 속도 10Mbps 및 TCP/IP계층 4.5Mbps 성능을 달성할 수 있는 제어보드와 해당 보드에 탑재되어 국제표준에 부합하는 충전단계 및 향후 지능형전력망과의 연계를 위한 기능을 수행할 소프트웨어 솔루션을 개발하였다. 또한 Combo 방식의 DC 급속충전기에 적용하기 위해 산업 환경 기준에 적합하도록 하드웨어를 설계하였으며 소프트웨어 솔루션과 함께 통합하여 V2G 통신 모듈을 개발하였다.