• Title/Summary/Keyword: Electric Tool

Search Result 543, Processing Time 0.025 seconds

A Study on the Selections of Optimized Process Conditions in the Wire Electric Discharge (와이어방전 가공시 최적 가공조건 선정에 관한 연구)

  • 김선진;성백섭;목포대;정성택;반재삼;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.631-636
    • /
    • 2002
  • The purpose of this study was to present the method to choose the optimization machining condition for the wire electric machine. This was completed by examining the ever- changing quality of the material and by improving the function of the wire electric discharge machine. Precision metal mold products and the unmanned wire electric discharge machining system were used and then applied in industrial fields. This experiment uses the wire electric discharge machine with brass wire electrode of 0.25mm. To measure the precision of the machining surface, average values are obtained from 3 samples of measures of center-line average roughness by using a third dimension gauge and a stylus surface roughness gauge. In this experiment, we changed no-node voltage to 7 and 9, pulse-on-time to $6\mu\textrm{s}$, $8\mu\textrm{s}$ and $10\mu\textrm{s}$, pulse-off-time to $8\mu\textrm{s}$, $10\mu\textrm{s}$ and $13\mu\textrm{s}$, and experimented on wire tension at room temperature by 1000gf, 1200gf, and 1400gf, respectively

  • PDF

Direct Electrical Probing of Rolling Circle Amplification on Surface by Aligned-Carbon Nanotube Field Effect Transistor

  • Lee, Nam Hee;Ko, Minsu;Choi, Insung S.;Yun, Wan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1035-1038
    • /
    • 2013
  • Rolling circle amplification (RCA) of DNA on an aligned-carbon nanotube (a-CNT) surface was electrically interfaced by the a-CNT based filed effect transistor (FET). Since the electric conductance of the a-CNT will be dependent upon its local electric environment, the electric conductance of the FET is expected to give a very distinctive signature of the surface reaction along with this isothermal DNA amplification of the RCA. The a-CNT was initially grown on the quartz wafer with the patterned catalyst by chemical vapor deposition and transferred onto a flexible substrate after the formation of electrodes. After immobilization of a primer DNA, the rolling circle amplification was induced on chip with the a-CNT based FET device. The electric conductance showed a quite rapid increase at the early stage of the surface reaction and then the rate of increase was attenuated to reach a saturated stage of conductance change. It took about an hour to get the conductance saturation from the start of the conductance change. Atomic force microscopy was used as a complementary tool to support the successful amplification of DNA on the device surface. We hope that our results contribute to the efforts in the realization of a reliable nanodevice-based measurement of biologically or clinically important molecules.

Identification of Closed Loop System by Subspace Method (부분공간법에 의한 페루프 시스템의 동정)

  • Lee, Dong-Cheol;Bae, Jong-Il;Hong, Soon-Il;Kim, Jong-Kyung;Jo, Bong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2143-2145
    • /
    • 2003
  • In the linear system identification using the discrete time constant coefficients, there is a subspace method based on 4SID recently much suggested instead of the parametric method like as the maximum likelihood method. The subspace method is not related with the impulse response and difference equation in its input-output equation, but with the system matrix of the direct state space model from the input-output data. The subspace method is a very useful tool to adopt in the multivariable system identification, but it has a shortage unable to adopt in the closed-loop system identification. In this paper, we are suggested the methods to get rid of the shortage of the subspace method in the closed-loop system identification. The subspace method is used in the estimate of the output prediction values from the estimating of the state space vector. And we have compared the results with the outputs of the recursive least square method in the numerical simulation.

  • PDF

Global Strategy Entry Mode Development: Case study of Electric Vehicle Market in Africa

  • Anyim Mokom Brenda
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.330-344
    • /
    • 2023
  • This research report cuts across management sciences (market strategy entry mode development) and innovative technology (Electric Vehicle (EV)) alongside measures to submerge global warming. The development of a successful entry mode for the electric Vehicle into the African continent is the main objective of the study. The study focuses on an analysis of how electric car manufacturers can enter the African market in other to achieve global sustainability and social responsibility. The methodology is based on identifying the factors that affect the choice of an entry mode into international markets by multinational companies desiring to leverage their revenue through a foreign market. It also offered a quantitative approach that can support the economic and sustainability entry mode model for EVs and a qualitative approach of Porter's five forces analysis as an entry mode coaching tool for EVs. These proxies are used in quite a wide range of multivariate statistical methods (trend analysis, ratio, and probability, comparative t-test technique, auto-regression, and ordinary least square technique). The result acknowledges joint venture and setting of the plant (physical presents) as the optimal entry mode in African EV market. It requires the EV manufacturers a tire-free emission innovation technology in order to optimize the global sustainability initiative.

Generation Scheduling with Large-Scale Wind Farms using Grey Wolf Optimization

  • Saravanan, R.;Subramanian, S.;Dharmalingam, V.;Ganesan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1348-1356
    • /
    • 2017
  • Integration of wind generators with the conventional power plants will raise operational challenges to the electric power utilities due to the uncertainty of wind availability. Thus, the Generation Scheduling (GS) among the online generating units has become crucial. This process can be formulated mathematically as an optimization problem. The GS problem of wind integrated power system is inherently complex because the formulation involves non-linear operational characteristics of generating units, system and operational constraints. As the robust tool is viable to address the chosen problem, the modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) algorithm is chosen as the main optimization tool. The intended algorithm is implemented on the standard test systems and the attained numerical results are compared with the earlier reports. The comparison clearly indicates the intended tool is robust and a promising alternative for solving GS problems.

An approach to building factory scheduling expert system by using model-based AI tool

  • Maruyama, Tadsshi;Konno, Satoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.446-451
    • /
    • 1992
  • In this paper, we propose a method to manage production system easily for operators when either equipments or products are changed. And we explain the scheduling AI tool which realizes the proposal method. The tool's knowledge expression consists of models, rules, mathematical expression and fuzzy logic. The model expresses the relations between products and manufacture, and properties of products. The models are separated into three type, equipment model, operation model, and product model. These models are classified by applicable fields as the assembly process or continuous plant process, The model expression of each type is based on object oriented paradigm. We report systems utilizing our approach.

  • PDF

A Study on the Precision Hole Machiningof Pre Hardened Mould Steel (프리하든 금형강의 정밀 홀 가공에 관한 연구)

  • Lee, Seung-Chul;Cho, Gyu-Jae;Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • In this paper, precision processing is carried out for the pre hardened steel(HRC 54), which is one of injection mould materials. Processing characteristics are estimated according to the number of tool cutting blade and roundness is observed by the 3-Dimensional measuring machine. The surface roughness affected by the wire electric discharge machining are measured. Cutting component force of STAVOX is the highest in condition of 2F processing because load per a blade of cutting tool is high. Especially, the difference in Fz is over 20N by cutting load. The slower spindle rotation speed and tool feed rate are, the better cutting component force is. The roundness of hole processed in condition of 4F is good because feed rate is able to be fast. When rotation speed is increased, the surface roughness is decreased. The surface roughness acquired in condition of 2F processing is higher about 50% than 4F processing.

A Study on Micro-hole Machining Technology using Ultrasonic vibration (초음파 진동을 이용한 미세구멍 가공기술)

  • 이석우;최헌종;이봉구;최영재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.231-234
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric and hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $\textrm{Al}_2\textrm{O}_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

generating characteristics of 50kW PV System by simulation tool (Simulation tool을 이용한 50kW PV System의 출력특성)

  • Park, J.M.;Jeong, B.H.;Piao, Z.G.;Lee, K.Y.;Cho, G.B.;Baek, H.L.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.337-339
    • /
    • 2005
  • A photovoltaic panel is a device that, through the photovoltaic effect, converts luminous energy into electric energy. Photovoltaic generation system uses infinity of sofa energy, cost of fuel is needless and there is no air pollution or waste occurrence. This paper summarizes the results of these efforts by offering a photovoltaic system structure in 50kW large scale applications installed in Chosun University dormitory roof and simulation tool. This describes configuration of utility interactive photovoltaic system which generated power supply for dormitory. In this Paper represent 50kW utility PV system examination result.

  • PDF