• 제목/요약/키워드: Electric Propulsion System

검색결과 325건 처리시간 0.028초

선박용 전기추진 장치의 기술동향 (A Review of Electric Ship Propulsion System)

  • 박정태
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.22-25
    • /
    • 2000
  • This paper introduces the ship propulsion system in different aspects. In fact there are many types to accomplish electric propulsion. The latest installations are based on fixed generator speed and motor speed control. The AC motor drive systems with synchroconverter cycloconverter PWM converter are chosen for the ship electric propulsion. The configurations of the ship electric propulsion. The configurationso of the ship electric propulsion system must be considered about following criteria : torque and speed performances redundancy cost harmonics available space and shape. This paper introduces possible configurations of the ship electric propulsion and the major and minor points.

  • PDF

Evaluating the Application Feasibility of Lithium-Battery Electric Propulsion for Fishing Boats

  • Haiyang Zhang;Jaewon Jang;Maydison;Daekyun Oh;Zhiqiang Han
    • 대한조선학회논문집
    • /
    • 제60권3호
    • /
    • pp.175-185
    • /
    • 2023
  • Many small vessels such as fishing boats operate in the world's oceans; accordingly, interest in these small vessels' exhaust-gas problem is increasing. Research on the application of electric-propulsion technology has been steadily conducted; however, the subject is limited to research ships or leisure boats, while research on application efficiency remains insufficient. This study attempts to apply lithium-battery electric-propulsion technology to small ships. A gross tonnage of 9.77, a representative fishing boat, is to be redesigned as a fully electrified ship. Without changing the main cabin's dimensions and fuel tanks, the ship's propulsion system is redesigned based on a lithium-battery electric-propulsion system. In addition, the redesigned system is compared with the original sample ship's diesel-propulsion system for application-effect analysis. The results indicate that under controlled sailing conditions, the weight and volume of the electric-propulsion system are 9.5 and 10.5 times those of the diesel-propulsion system, respectively. These values indicate that the system cannot meet fishing boats' high endurance requirements. Therefore, under the existing technical conditions, applying the full lithium-battery electric-propulsion system to solve the problem of high emissions from fishing boats shows limited feasibility.

영국의 우주비행체용 화학추진 및 전기추진시스템 개발 (Development of Chemical and Electric Propulsion Systems for Spacecraft in UK)

  • 한조영
    • 항공우주시스템공학회지
    • /
    • 제2권1호
    • /
    • pp.37-45
    • /
    • 2008
  • KARI has jointly developed COMS bipropellant propulsion system with EADS Astrium, UK. It is well known at the moment about American or even German efforts for space development and space propulsion activities. On the contrary UK's capability for space development hasn't been recognised well in Korea. The major space activities relevant to the development of chemical and electric propulsion systems in UK, in reference to our space propulsion programme are addressed in detail. In addition the collaboration in prospect between two countries is proposed.

  • PDF

전기 추진 시스템의 냉각시스템에 관한 분석 및 설계 (Analysis & Design of Cooling System for Electric Propulsion System)

  • 오진석;조관준;곽준호;이지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.596-602
    • /
    • 2008
  • The cooling system is one of the most concerning factor for the reliability of the electric propulsion ship. Generally, a drive system operation in higher temperature decreases the device's reliability and power efficiency. The management of power loss and temperature of switching devices is indispensable for the reliability of the power electric system. In this paper, the switching devices are molded by IGBT, and the propulsion system is consisted of MIIR(Motor with Inverter Internal to Rotor). The system composition interacts with each other to calculate the loss and temperature of device. The calculation result is used for modeling and designing of the control and monitoring system for the electric propulsion system.

A Study on Application of Electric Propulsion System using AFE Rectifier for Small Coastal Vessels

  • Jeon, Hyeonmin;Kim, Seongwan;Kim, Jongsu
    • 해양환경안전학회지
    • /
    • 제24권3호
    • /
    • pp.373-380
    • /
    • 2018
  • The small coastal vessel registered in Korea, small coastal vessels with a gross tonnage of 10 tons or less account for 94.6 % and among them, aged vessels over 16 years age indicate 40.6 %. In order to reduce GHG emissions from small coast vessels, discussions are underway to replace aging ships' propulsion units with eco - friendly propulsion facilities, and the electric propulsion ship is emerging as one of the measures. The electric propulsion system using the DFE rectifier, which was applied in the conventional large commercial vessel, was effective in reducing the harmonics and improving the DC output voltage of the DC link stage, but it occupied a large volume and caused an increase in the overall system price. Therefore, in this paper, we propose an electric propulsion system using AFE rectifier with a small volume of system that can be applied to a small coastal vessel. In order to analyze the effectiveness of the overall system, the load profile was applied to obtain accurate and rapid speed tracking performance of the propulsion motor affected by the speed load. In addition, the power factor and total harmonic distortion factor of the voltage and current on the improved power output side are derived through simulation.

도심용 eVTOL 항공기 전기추진시스템 기준 분석 및 안전성 확보 방안에 관한 연구 (A Study on the Certification Standard Analysis and Safety Assurance Method for Electric Propulsion System of the Urban eVTOL Aircraft)

  • 김주영;유민영;권혁록;길기남;공병호;나종화
    • 항공우주시스템공학회지
    • /
    • 제16권3호
    • /
    • pp.42-51
    • /
    • 2022
  • 도심환경에서 저공해/저소음으로 운항이 요구되는 eVTOL 항공기는 왕복행정엔진이나 터빈엔진과 같은 전통적인 추진시스템이 아닌 대부분 배터리를 이용한 전기추진시스템을 동력원으로 사용한다. 이에 따라 전기추진시스템에 대한 인증제도 마련 및 전기추진시스템의 안전성 확보방안이 중요한 이슈가 되고있다. 미국의 경우 전기추진시스템을 인증하기 위해 FAR Part 33에 준하는 특수기술기준을 발행하였고 유럽의 경우 전기추진시스템의 인증을 위해 다양한 특별조건을 제정하였다. 따라서 국내에도 미국, 유럽에 맞춰가며 eVTOL 항공기 전기추진시스템 기술기준에 대한 대비가 필요하다. 본 논문에서는 특별조건 중 전기/하이브리드 추진 시스템의 기술기준인 SC E-19를 분석하였고 기존 항공기 안전성 평가 절차인 ARP 4761에 항공기 수준에서 적용 되어야하는 SC E-19 기술기준을 적용시킴으로써 항공기에 장착하는 전기추진시스템의 안전성 확보 방안을 제안하였다. 마지막으로 Ehang 184 전기추진시스템의 사례연구를 통해 제안한 전기추진시스템의 안전성 확보 방안이 항공기 수준에서 적용 가능함을 확인하였다.

전기추진시스템의 냉각시스템에 관한 분석 및 설계 (Analysis & Design of Cooling System for Electric Propulsion System)

  • 유병랑;오진석;진선호;임명규;곽준호;조관준;김장목
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1113-1119
    • /
    • 2005
  • The power electric system is one of the most concerning factor for the reliability of the electric propulsion ship. operation in higher temperature decreases the device's reliability and power efficiency. the management of power loss and temperature of switching devices is indispensable for the reliability fo the power electric system. In this paper, IGBT chip of the switching devices is modeled and MIIR(Motor with Inverter Internal to Rotor)type of the propulsion motors is used. these parts interact with each other to calculate the loss and temperature of device. calculated Results is modeled and designed of the control and monitoring system for the electric propulsion system.

  • PDF

전기추진시스템의 부하저감 설계 및 해석 (Design and Analysis of Load Shedding for the Electric Propulsion System)

  • 김경화;김대헌;이석현
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.971-977
    • /
    • 2015
  • The electric propulsion system requires more reliability and safety than the conventional propulsion system because any sudden changes of electric system would bring tremendous effects on the ship's safety and propulsion. So it is very important to consider the potential transient effects. This paper discusses one of the worst electric accident. That is, one or two of generators are out of service in normal seagoing condition. And the appropriate measures are simulated in order to prevent the frequency decline that can bring the other generator's tripping. In addition, the relation between the transient effects and the major factors(inertia of generator/motors, governor's drooping characteristic and response speed) are also identified using the ETAP software.

이상상태 발생 시 선박용 추진전동기 및 추진축의 과도상태 해석 (Transient analysis of marine propulsion motor and shaft under abnormal conditions)

  • 오세진;김종수;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.34-38
    • /
    • 2016
  • 최근 추진 전동기가 장착된 전기추진 시스템의 대형 크루즈 선박 및 상선이 점차 증가하는 추세이다. 이러한 전기추진 선박에서 추진 전동기에 이상상태가 발생하면 전동기 자체 및 프로펠러축에 심각한 손상이 발생할 수 있다. 하지만 전기추진 선박에 사용되는 추진 전동기의 정상상태 운전 및 이상상태 시의 분석에 관한 연구는 찾아보기 힘들고 관련 정보도 매우 부족한 실정이다. 본 연구에서는 전기추진 선박용 추진 시스템의 수학적 모델을 제시하고 이를 바탕으로 전기적인 이상상태 발생 시에 추진 전동기 및 프로펠러축에 발생하는 과도현상을 해석하고자 한다. 본 연구에 사용된 전기추진 선박용 전동기는 동기전동기이며 소프트웨어인 Matlab을 사용하여 모의실험을 수행하였으며, 정격으로 운전 중인 추진 전동기에 이상상태가 발생하였을 경우 과도전류는 1상 접지 상태에서 가장 크게 발생하며 추진축에 발생하는 과도토크는 3상 접지 및 2상 접지 상태에서 상대적으로 크게 발생하였고, 정격으로 운전 중 추진 전동기의 여자전력이 차단될 경우에도 과도전류와 과도토크가 비교적 크게 발생함을 확인하였다.

소형 모사 장비의 데이터를 이용한 선박용 전기 추진 모터의 고장 유형별 진동 신호의 분류 (Classification of Vibration Signals for Different Types of Failures in Electric Propulsion Motors for Ships Using Data from Small-Scale Apparatus)

  • 유승열;장준교;전민성;이재철;강동훈;이순섭
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.441-449
    • /
    • 2023
  • With the enforcement of environmental regulations by the International Maritime Organization, the market for eco-friendly ships is expanding, and ships using electric propulsion devices are emerging as a promising solution. Many studies have been conducted to predict the failure of ships, but most of them are mainly research on the main diesel engine of ships. As the ship's propulsion method changes, new data is needed to predict the failure of electric propulsion ships. In this paper aims to analyze the failure characteristics of the electric propulsion system in consideration of the difference in the type of failure between the internal diesel engine and the electric propulsion system. The ship's propulsion unit assumed a DC motor and a signal pattern for normal conditions and general failure modes, but the failure record of the electric propulsion device operated on the actual ship was not available, so it generated a failure signal for small electric motor equipment to identify the failure signal. Assuming unbalance, misalignment, and bearing failure, which are the primary failure modes of the ship's electric motor, a failure signal was generated using a "rotator vibration data generator," and the frequency band, size, and phase difference of the measured vibration signal were analyzed to analyze the characteristics of each failure condition. Finally, the characteristics of each failure condition were identified so that the signals according to the failure type could be classified.