DOI QR코드

DOI QR Code

Evaluating the Application Feasibility of Lithium-Battery Electric Propulsion for Fishing Boats

  • Haiyang Zhang (Department of Ocean System Engineering, Graduate School, Mokpo National Maritime University) ;
  • Jaewon Jang (Department of Ocean System Engineering, Graduate School, Mokpo National Maritime University) ;
  • Maydison (Department of Ocean System Engineering, Graduate School, Mokpo National Maritime University) ;
  • Daekyun Oh (Department of Naval Architecture and Ocean Engineering, Mokpo National Maritime University) ;
  • Zhiqiang Han (School of Naval Architecture and Maritime, Zhejiang Ocean University)
  • Received : 2023.03.24
  • Accepted : 2023.04.28
  • Published : 2023.06.20

Abstract

Many small vessels such as fishing boats operate in the world's oceans; accordingly, interest in these small vessels' exhaust-gas problem is increasing. Research on the application of electric-propulsion technology has been steadily conducted; however, the subject is limited to research ships or leisure boats, while research on application efficiency remains insufficient. This study attempts to apply lithium-battery electric-propulsion technology to small ships. A gross tonnage of 9.77, a representative fishing boat, is to be redesigned as a fully electrified ship. Without changing the main cabin's dimensions and fuel tanks, the ship's propulsion system is redesigned based on a lithium-battery electric-propulsion system. In addition, the redesigned system is compared with the original sample ship's diesel-propulsion system for application-effect analysis. The results indicate that under controlled sailing conditions, the weight and volume of the electric-propulsion system are 9.5 and 10.5 times those of the diesel-propulsion system, respectively. These values indicate that the system cannot meet fishing boats' high endurance requirements. Therefore, under the existing technical conditions, applying the full lithium-battery electric-propulsion system to solve the problem of high emissions from fishing boats shows limited feasibility.

Keywords

Acknowledgement

This research was financially support by Jeollannam-do "2023 R&D supporting program" operated by Jeonnam Technopark and grant from the National R&D Project of "Demonstration of power generation system and RCI technology using ship waste heat(2/6)" funded by the Ministry of Oceans and Fisheries, Korea.

References

  1. An, H.C., Bae, J.H., Bae, B.S. and Park, J.M., 2013. Operating performance of squid jigging vessel using the LED and metal halide fishing lamp combination. Journal of the Korean Society of Fisheries and Ocean Technology, 49(4), pp.395-403. https://doi.org/10.3796/KSFT.2013.49.4.395
  2. An, Y.I., 2014. Fishing efficiency of high capacity (360W) LED fishing lamp for squid Todarodes pacificus. Journal of the Korean Society of Fisheries and Ocean Technology, 50(3), pp.326-333. https://doi.org/10.3796/KSFT.2014.50.3.326
  3. An, Y.I., He, P., Arimoto, T. and Jang, U.J., 2017. Catch performance and fuel consumption of LED fishing lamps in the Korea hairtail angling fishery. Fisheries Science, 83(3), pp.343-352. https://doi.org/10.1007/s12562-017-1072-6
  4. Electrine. Battery series. [Online] Available at: http://www.electrine.co.kr/products/battery [Accessed 19 March 2023].
  5. FAO., 2022. The state of world fisheries and aquaculture 2022. Towards Blue Transformation. FAO Rome.
  6. Greer, K., Zeller, D., Woroniak, J., Coulter, A., Winchester, M., Palomares, M.D. and Pauly, D., 2019. Global trends in carbon dioxide (CO2) emissions from fuel combustion in marine fisheries from 1950 to 2016. Marine Policy, 107:103382.
  7. Han, Z.-Q., Jang. J., Lee. K. and Oh. D., 2021. Lightweight-laminate design of fishing boat considering mechanical properties of glass fiber reinforced polymer. Ship Building of China, 62(02), pp.132-144.
  8. Jeong, S., Woo, J.H. and Oh, D., 2020. Simulation of greenhouse gas emissions of small ships considering operating conditions for environmental performance evaluation. International Journal of Naval Architecture and Ocean Engineering, 12, pp.636-643. https://doi.org/10.1016/j.ijnaoe.2020.07.006
  9. LG Marines. 2017. I-330. [Online] Available at: https://company.metstrade.com/Image/Download?docid=75939&dl=MIJNRAI_TOP_LIBRARY
  10. Li, K., Yu, Y., Wang, Y. and Hu, Z., 2018. Research on structural optimization method of FRP fishing vessel based on artificial bee colony algorithm. Advances in Engineering Software, 121, pp.250-261. https://doi.org/10.1016/j.advengsoft.2018.03.011
  11. Marind. 2006. MG-5154. [Online] Available at: https://www.pjpower.com/products/twindisc/marine-transmissions/mg-5145 [Accessed 19 March 2023].
  12. Molland, A., Turnock, S. and Hudson, D., 2017. Hull form design. In ship resistance and propulsion: practical estimation of ship propulsive power. Cambridge: Cambridge University Press.
  13. Oh, D., Jung, S. and Jeong, S., 2018. Effect of a lightweight hull material and an electric propulsion system on weight reduction: Application to a 45ft CFRP electric yacht. Journal of The Korean Society of Marine Environment & Safety, 24(6), pp.818-824. https://doi.org/10.7837/kosomes.2018.24.6.818
  14. Olivier, J.G., Van Aardenne, J.A., Dentener, F.J., Pagliari, V., Ganzeveld, L.N. and Peters, J.A., 2005. Recent trends in global greenhouse gas emissions: regional trends 1970-2000 and spatial distribution of key sources in 2000. Environmental Sciences, 2(2-3), pp.81-99. https://doi.org/10.1080/15693430500400345
  15. Olmer, N., Comer, B., Roy, B., Mao, X. and Rutherford, D., 2017. Greenhouse gas emissions from global shipping, 2013-2015 Detailed Methodology. International Council on Clean Transportation: Washington, DC, USA.
  16. Pahlawan, M.R., Kadhafi, M., Sunardi, S. and Yulianto, E. S., 2020. Analysis of existing traditional fishing vessel with hold compartment for live fish. International Conference on Fisheries and Marine Research, 1(1), pp 75-78.
  17. Percic, M., Vladimir, N. and Korican, M., 2021. Electrification of inland waterway ships considering power system lifetime emissions and costs. Energies, 14(21): 7046.
  18. Prananda, J., Koenhardono, E.S. and Tjoa R.C., 2020. Design of an optimum battery electric fishing vessel for Natuna sea. International Journal of Marine Engineering Innovation and Research, 4(2), pp.104-114. https://doi.org/10.12962/j25481479.v4i2.3455
  19. Puspita, H.I.D., Kusnadi, R.F. and Syaikhu, D., 2022. Optimalisasi lambung kapal penangkap ikan dengan bahan dasar fiberglass di pelabuhan perikanan puger. Zona Laut: Journal of Ocean Science and Technology Innovation, 3(1). pp.38-46. https://doi.org/10.62012/zl.v3i1.11087
  20. Q-yacht. Q30 - Experience the Electric Silence. [Online] Available at: https://q-yachts.com/q30/ [Accessed 19 March 2023].
  21. Research Institute of Medium & Small Shipbuilding. 2006. Design drawings of GT 9.77-ton fishing boat.
  22. Romadhoni, R. 2020. Spesifikasi teknis pembangunan kapal ikan kapasitas 3 gross tonage berbahan fiberglass. Seminar Nasional Industri dan Teknologi, 97-107.
  23. Santosa, A.W.B., Mausulunnaji, M.F., Setiyobudi, N., Chrismianto, D. and Hadi, E.S., 2022. Engine propeller matching analysis on fishing vessel using inboard engine. Journal of Applied Engineering Science, 20(2), pp.477-484. https://doi.org/10.5937/jaes0-31979
  24. Ship Technology. 2015. Ampere Electric-Powered Ferry. [Online] Available at: https://www.ship-technology.com/projects/norled-zerocat-electric-powered-ferry/ [Accessed 19 March 2023].
  25. Suh, J,. Wang, W. and Kim, S., 2010. An experimental study on characteristics of exhaust emissions with fuel properties changes in a diesel engine for small-sized fishing vessel. Journal of the Korean Society of Fisheries and Ocean Technology, 46(4), pp.487-494. https://doi.org/10.3796/KSFT.2010.46.4.487
  26. Szelangiewicz, T., Abramowski, T., Zelazny, K. and Sugalski, K., 2021. Reduction of resistance, fuel consumption and GHG emission of a small fishing vessel by adding a bulbous bow. Energies, 14(7), 1837.
  27. Tezdogan, T., Shenglong, Z., Demirel, Y K., Liu, W., Leping, X., Yuyang, L. and Incecik, A., 2018. An investigation into fishing boat optimization using a hybrid algorithm. Ocean Engineering, 167, pp.204-220. https://doi.org/10.1016/j.oceaneng.2018.08.059
  28. Visitmosel. "Sankta Maria II. [Online] Available at: https://www.visitmosel.de/poi/faehre-sankta-maria-ii [Accessed 19 March 2023].
  29. Volvo, P. 2016. D16-750. [Online] Available at: https://www.haismascheepsmotoren.nl/wp-content/uploads/2019/02/Product-leaflet-D16-MH.pdf [Accessed 19 March 2023].
  30. Wang, H., Boulougouris, E., Theotokatos, G., Zhou, P., Priftis, A. and Shi, G., 2021. Life cycle analysis and cost assessment of a battery powered ferry. Ocean Engineering, 241, 110029.
  31. Xhaferaj, B. 2022. Investigation on some conventional hulls forms of the predictive accuracy of a parametric software for preliminary predictions of resistance and power. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 73(1), pp.1-22.
  32. Xinhuanet. 2020. The full electric cruise ship "Junlv" made its maiden voyage in Wuhan. [Online] Available at: http://m.xinhuanet.com/hb/2020-06/24/c_1126152950.htm [Accessed 19 March 2023].
  33. Yasim, A.Y.A., Wibowo, R.K.K. and Priohutomo, K., 2021. Study of main engine and propeller matching on fishing vessel after reparation (case study of KM. Km. Nelayan 2017-572). Wave: Journal of Maritime Technology, 15(1), pp.11-20. https://doi.org/10.29122/jurnalwave.v15i1.4724
  34. Yu, J.W., Lee, M.K., Kim, Y.I., Suh, S.B. and Lee, I., 2021. An optimization study on the hull form and stern appendage for improving resistance performance of a coastal fishing vessel. Applied Sciences, 11(13), 6124.