• 제목/요약/키워드: Electric Field strength

검색결과 468건 처리시간 0.026초

절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 분석 (Analysis of Electrical Degradation in Epoxy Composites by Dielectric Breakdown Properties)

  • 최철호;박용필;임중관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.414-419
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of (idled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 MV/cm.

  • PDF

절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 평가 (Evaluation of Electrical Degradation in Epoxy Composites by Dielectric Breakdown Properties)

  • 임중관;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.212-217
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 MV/cm.

  • PDF

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

폴리프로필렌 필름의 전도현상 (Conduction Phenomena of the Polypropylene Film)

  • 이준욱;김용주;김봉협
    • 대한전기학회논문지
    • /
    • 제34권9호
    • /
    • pp.349-354
    • /
    • 1985
  • The conducting currents of polypropylene film was measured a function with electric fields at temperature of 25,35,45( C). It appears that there are four regions of conducting currents, depending upon the strength of the applied electric field` ohmic region based on ionic conduction, Poole-Frenkel region, Schottky region and negative resistance region. Several information of dielectric constant and potential barrier height were obtained.

  • PDF

Fast Microchip Electrophoresis Using Field Strength Gradients for Single Nucleotide Polymorphism Identification of Cattle Breeds

  • Oh, Doo-Ri;Cheong, Il-Cheong;Lee, Hee-Gu;Eo, Seong-Kug;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1902-1906
    • /
    • 2010
  • A microchip electrophoresis (ME) method was developed using a programmed field strength gradients (PFSG) for the single nucleotide polymorphism (SNP) based fast identification of cattle breeds. Four different Korean cattle (Hanwoo) and Holstein SNP markers amplified by allele-specific polymerase chain reaction were separated in a glass microchip filled with 0.5% poly(ethyleneoxide) ($M_r$ = 8 000 000) by PFSG as follows: 750 V/cm for 0 - 14 s, 166.7 V/cm for 14 - 31 s, 83.3 V/cm for 31 - 46 s, and 750 V/cm for 46 - 100 s. The cattle breeds were clearly distinguished within 45 s. The ME-PFSG method was 7 times and 5 times faster than the constant electric field ME method and the capillary electrophoresis- PFSG method, respectively, with a high resolving power ($R_s$ = 5.05 - 9.98). The proposed methodology could be a powerful tool for the fast and simultaneous determination of SNP markers for various cattle breeds with high accuracy.

고내압 전력 스위칭용 AlGaN/GaN-on-Si HEMT의 게이트 전계판 구조 최적화에 대한 이차원 시뮬레이션 연구 (Two-dimensional Simulation Study on Optimization of Gate Field Plate Structure for High Breakdown Voltage AlGaN/GaN-on-Si High Electron Mobility Transistors)

  • 이호중;조준형;차호영
    • 대한전자공학회논문지SD
    • /
    • 제48권12호
    • /
    • pp.8-14
    • /
    • 2011
  • 본 논문에서는 이차원 소자 시뮬레이션을 활용하여 주어진 게이트-드레인 간격에서 AlGaN/GaN-on-Si HEMT (high electron mobility transistor) 의 고항복전압 구현을 위한 게이트 전계판의 최적화 구조를 제안하였다. 게이트 전계판 구조를 도입하여 게이트 모서리의 전계를 감소시켜 항복전압을 크게 증가시킬 수 있음을 확인 하였으며, 이때 전계판의 길이와 절연막의 두께에 따라 게이트 모서리와 전계판 끝단에서 전계분포의 변화를 분석하였다. 최적화를 위하여 시뮬레이션을 수행한 결과, 1 ${\mu}m$ 정도의 짧은 게이트 전계판으로도 효과적으로 게이트 모서리의 전계를 감소시킬 수 있으며 전계판의 길이가 너무 길어지면 전계판과 드레인 사이의 남은 길이가 일정 수준 이하로 감소되어 오히려 항복전압이 급격하게 감소함을 보였다. 전 계판의 길이가 1 ${\mu}m$ 일 때 최대 항복전압을 얻었으며, 게이트 전계판의 길이를 1 ${\mu}m$로 고정하고 $SiN_x$ 박막의 두께를 변화시켜본 결과 게이트 모서리와 전계판 끝단에서의 전계가 균형을 이루면서 항복전압을 최대로 할 수 있는 최적의 $SiN_x$ 박막 두께는 200~300 nm 인 것으로 나타났다.

Analysis of Insulating Characteristics of Cl2-He Mixture Gases in Gas Discharges

  • Tuan, Do Anh
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1734-1737
    • /
    • 2015
  • Insulating characteristics of Cl2-He mixture gases in gas discharges were analysed to evaluate ability of these gases for using in medium voltage and many industries. These are electron transport coefficients, which are the electron drift velocity, density-normalized longitudinal diffusion coefficient, and density-normalized effective ionization coefficient, in Cl2-He mixtures. A two-term approximation of the Boltzmann equation was used to calculate the electron transport coefficients for the first time over a wide range of E/N (ratio of the electric field E to the neutral number density N). The limiting field strength values of E/N, (E/N)lim, for these binary gas mixtures were also derived and compared with those of the pure SF6 gas.

분극전계가 모포트로픽 상경계 부근의 PZT 세라믹스의 공진주파수의 온도의존성에 미치는 영향 (The Effect of Poling Strength on Temperature Dependence of Resonance Frequency of PZT Ceramics Near the Morphotropic Phase Boundary)

  • 양정보;양완석;이개명
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1213-1217
    • /
    • 2008
  • Poling is an important process in fabricating PZT ceramic devices such as filters and resonators and activates piezoelectricity to sintered PZT ceramics. Tolerance of the operating frequency of these devices is tightly required in applications. And a factor to attribute the tolerance is the temperature dependence of the resonance frequency of PZT ceramics. In this paper the relationship of poling strength and temperature dependence of resonance frequency of PZT specimens was studied. The $Pb(Zr_{0.53}Ti_{0.47})O_3$ ceramics were fabricated and the poling strengths were chosen to be 0.5, 1.5, 2.5 and 3.5 [kV/mm]. The dielectric constant of the specimen poled in poling strength 0.5 [kV/mm] was less than that of unpoled specimen and the specimen poled in higher electric field had the higher dielectric constant. (002) peak in X-ray diffraction patterns of the specimens increased as poling strength increased. And the change of resonance frequency of the specimens according to the variation of temperature was measured. Resonance frequency of all specimens increased as the temperature increased. The specimen poled in higher electric field had the smaller positive temperature coefficient of resonance frequency. The effect that temperature coefficient of resonance frequency becomes smaller is obtained when Zr mole in PZT composition equation increase. Controlling the poling strength is believed to be a method to adjust the temperature stability of resonance frequency of the PZT ceramic devices.

전자장해석을 이용한 풍력발전용 전력 케이블의 전자기적 고찰 (Finite Element Analysis of Power Cables for Wind Turbine Application)

  • 김지현;조성호;이인우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.257-260
    • /
    • 2006
  • This paper presents electromagnetic finite element analysis of power cables for wind turbine application. Eddy current losses are calculated due to high currents along metallic part, and dielectric strength on power cables is investigated for case study, which suggests the optimal cabling configuration for wind turbine construction.

  • PDF

기체-액체 혼합 방전에 의한 화학적 활성종 생성 특성 (Generation of Chemically Active Species in Hybrid Gas-Liquid Discharges)

  • 정재우
    • 대한환경공학회지
    • /
    • 제29권5호
    • /
    • pp.556-563
    • /
    • 2007
  • 고전압 방전극이 기체상에 위치하고 접지 전극이 수중에 설치된 기체-액체 혼합 방전에 의한 화학적 활성종의 발생 특성에 관해 실험실 규모 실험을 수행하였다. 실험된 전극 구조는 기존의 연구에서 사용해왔던 일반적 전극 배열에서보다 높은 전계 강도(electric field strength)를 형성하고 짧은 폭을 지닌 펄스들을 생성시킴으로써 방전에 의해서 일어나는 화학반응의 에너지 효율성을 높일 수 있는 것으로 나타났다. 방전에 의해 기체상에 생성되는 오존 농도는 실험된 전압 범위의 중간 값인 45 kV 조건에서 가장 높은 것으로 관찰되었다. 용액 전도도가 낮을수록 액체상을 통한 전기 저항이 증가하여 기체상에서 높은 전계 강도가 형성되므로 오존 생성을 촉진시키는 것으로 나타났다. 인가전압이 증가할수록 높은 전계 강도가 형성되어 강한 방전이 이루어지므로 과산화수소 생성속도가 증가하는 것으로 나타났다. 낮은 전압에서는 용액 전도도가 증가하면 과산화수소 분해속도가 증가하기 때문에 과산화수소 생성 속도가 감소하며 높은 전압에서는 용액 전도도가 증가하면 자외선 조사 등에 의해 과산화수소 발생의 중간 생성물인 OH 라디칼의 발생이 촉진되므로 과산화수소 생성 속도가 증가하는 것으로 나타났다. 산소와 아르곤의 혼합기체가 공급될 때, 강하고 안정한 방전이 이루어져 과산화수소 생성속도가 증가하는 것으로 나타났다.