• Title/Summary/Keyword: Electric Field Focusing

Search Result 40, Processing Time 0.028 seconds

A Study on the Microwave Electric-Field Focusing Waveguide Systems for Driving Plasma Visible Light (플라즈마 가시광 구동을 위한 초고주파 전계 집속형 도파관 시스템에 관한 연구)

  • Jeon, Hoo-Dong;Park, Eui-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.303-312
    • /
    • 2009
  • In this study, a waveguide system for focusing the electric field is presented to emit the microwave-driven plasma visible light. This system consists of a magnetron for the microwave power supply, the waveguide section for power propagation, and the mesh-type cavity reactor. The quartz bulb containing a dose of sulfur powder and buffer gas Ar is located in the reactor, and forced by the strongly concentrated electric field for generating and exciting the sulfur plasma. That is, the conductor tips are loaded on each inner wall of the waveguide and the reactor, and then the plasma bulb is positioned between the tips, hence focusing the strong electric field on the bulb. Furthermore the waveguide section is designed for minimizing the degradations of matching characteristics according to the variations of the electrical conductivities of plasma at the transitory phase for plasma generation, hence providing the stable operation. Finally, the 2.45 GHz aluminum waveguide system is constructed, and then experiments for emitting the visible light are performed by using 400 W-class magnetron, showing the validity of designed system.

Electrodynamic Behavior of a Charged Particle among Two-Dimensional Quadrupole Electrodes (2차원 4극 전극 사이에서의 하전 입자의 동전기력학적 거동)

  • Park, Seok-Joo;Lim, Jeong-Hwan;Kim, Sang-Do;Choi, Ho-Kyung;Park, Hyun-Seol;Park, Young-Ok;McMurry, Peter-H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.741-749
    • /
    • 2001
  • An inhomogeneous hyperbolic electric field is established among two-dimensional quadrupole electrodes to which an ac voltage is applied. Conditions under which charged particles are focused into a narrow axis region of the plug laminar flow are discussed. The aerodynamic forces influence the behavior of the charged particles in the quadrupole electric field. We derived the dimensionless equations of motion of a charged particle in the alternating quadrupole electric field, and discussed particle trajectories and focusing performance in terms of two dimensionless parameters, which are functions of particle size, operating pressure, and the amplitude and frequency of applied AC voltage, with the results of numerical simulations and experiments.

Design and Analysis of 2-Dimensional Near-Field Focusing Plates Lens (근거리에서의 2차원 전계 집속 평판 렌즈 설계 및 해석)

  • Kim, Young-Guk;Lim, Sung-Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1037-1042
    • /
    • 2011
  • Since J.B.Pendry proposed the concept of "perfect lens" there have been many researches which focus electric fields. However they used 1 dimensional lens. In contrast, this paper suggests 2 dimensional lens calculated from angular-spectrum method. 2-dimensional focusing is achieved in nearfield. This result implies that the proposed lens can be used for wireless power transfer, imaging system, and sensing systems.

Field Emission Property of ZnO Nanowire with Nanocone Shape (나노뿔 형태로 제작된 ZnO 나노선의 전계방출 특성)

  • No, Im-Jun;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.590-594
    • /
    • 2012
  • ZnO nanowires were fabricated by hydrothermal synthesis technique for field emission device application. Al-doped zinc oxide (AZO) thin films were prepared as seed layer of catalyst for the ZnO nanowire synthesis, for which conductivity of the seed layer was tried to be improved for enhancing the field emission property of the ZnO nanowire. The AZO seed layer revealed specific resistivity of $ 7.466{\times}10^{-4}[{\Omega}{\cdot}cm]$ and carrier mobility of 18.6[$cm^2$/Vs]. Additionally, upper tip of the prepared ZnO nanowires was treated by hydrochloric acid (HCl) to form a nanocone shape of ZnO nanowire, which was aimed for enhanced focusing of electric field on that and resultingly to improve field emission property of the ZnO nanowires. The ZnO nanowire with nanocone shape revealed decreased threshold electric field and increased current density than those of the simple ZnO nanowires.

The Characteristics of the Ionic Wind Generation with Corona Electrodes Installed in Form of the Ring (환형 배치된 코로나 전극에 의한 이온풍 발생 특성)

  • Kim, Jin-Gyu;Jung, Jae-Seung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.54-59
    • /
    • 2014
  • The electric power can be converted into the mechanical power by a corona discharge system. This way has not stronger force than a electric motor. But it has been applied in various industrial fields because of many advantages, no moving parts, smaller noise, simpler structure, minimizing et al. In this paper, corona discharge system with multiple corona electrode installed in form of the ring, has been studied by focusing on the electrical and mechanical characteristics. Intensity of the corona discharge depends on applied electric field, and electric field is related to the applied voltage, discharge gap spacing(s), distance between each corona electrodes(d). As a result, in the case d/s=0.9, most intensive discharge occurred in this experiments. In the region of d/s<0.9, ionic wind velocity has saturation value in spite of decreasing corona current, because each ion velocities increase by the increasing electric field.

Active Focusing of Light in Plasmonic Lens via Kerr Effect

  • Nasari, Hadiseh;Abrishamian, Mohammad Sadegh
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.305-312
    • /
    • 2012
  • We numerically demonstrate the performance of a plasmonic lens composed of an array of nanoslits perforated on thin metallic film with slanted cuts on the output surface. Embedding Kerr nonlinear material in nanoslits is employed to modulate the output beam. A two dimensional nonlinear-dispersive finite-difference time-domain (2D N-D-FDTD) method is utilized. The performance parameters of the proposed lens such as focal length, full-width half-maximum, depth of focus and the efficiency of focusing are investigated. The structure is illuminated by a TM-polarized plane wave and a Gaussian beam. The effect of the beam waist of the Gaussian beam and the incident light intensity on the focusing effect is explored. An exact formula is proposed to derive electric field E from electric flux density D in a Kerr-Dispersive medium. Surface plasmon (SPs) modes and Fabry-Perot (F-P) resonances are used to explain the physical origin of the light focusing phenomenon. Focused ion beam milling can be implemented to fabricate the proposed lens. It can find valuable potential applications in integrated optics and for tuning purposes.

A Geometric Optimization of a Microchannel for Temperature Gradient Focusing via Joule Heating (줄 발열에 의한 온도기울기 농축을 위한 미세채널 형상 최적화)

  • Han, Tae-Heon;Kim, Sun-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1623-1628
    • /
    • 2008
  • A temperature gradient focusing (TGF) via Joule heating phenomenon was numerically studied. The governing transport equations are implemented into a quasi-1D numerical model to predict the resulting temperature, velocity, and concentration profiles along a microchannel of varying width under an applied electric field. The model is used to analyze the effects of varying certain geometrical parameters of a microchannel on the focusing performance of the device. We show the effects of varying width of the microchannel having a fixed length, and propose the optimal geometry of the device. This method can be easily implemented into lab-on-a-chip (LOC) applications where focusing is required based on its simple design.

  • PDF

The Thickness Dependence of Edge Effect in Thin Insulating Films

  • Song Jeong-Myen;Moon Byung-Moo;Sung Yung-Kwon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.13-17
    • /
    • 2003
  • This paper deals with the edge effect in thin insulating films, focusing on their dependence on film thickness. The finding is that the electric field is lowered at the edge as the film thickness is reduced, which, in turn, is closely related to dielectric breakdown voltage. In order to analyze this phenomenon, a simple capacitor model is introduced with which dependence of dielectric breakdown voltage around the electrode edge on the film thickness is explained. Due to analytical difficulty to get the expression of electrical field strength at the edge, an equivalent circuit approach is used to find the voltage expression first and then the electric field expression using it. The relation gets to an agreement with the experimental findings shown in the paper. This outcome may be extended to solve similar problems in multi-layer insulating films.

A Study on the Influence of Pure Iron Purity of Electric Lens on the Electron Beam Control (전자빔 가공기의 전자렌즈 순철순도가 빔 제어에 미치는 영향)

  • Lee Chan-Hong;Ro Seung-Kook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.149-153
    • /
    • 2005
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-beam writing technology is rapidly growing in MEMS and nano-engineering areas. In the optical column of the e-beam writer, there are several lenses condensing and focusing electron beams from electron gun with fringing magnetic fields. The polepieces of these lenses are usually made with high purity iron which is hard to fabricate and very expensive. In this paper, the possibility of using polepiece of object lens composed with pure iron and low carbon steel was examined to reduce cost. The magnetic field at object lens was calculated with finite element method, and practical focusing qualities of SEM pictures were observed comparing for the object lens polepieces with pure iron and two type of composed with low carbon steel.

  • PDF

A Three-Dimensional Particle Focusing Channel Using the Positive Dielectrophoresis (pDEP) Guided by a Dielectric Structure Between Two Planar Electrodes (두 평면 전극 사이의 절연체 구조물에 의해 유도되는 양의 유전영동을 이용한 삼차원 입자 정렬기)

  • Chu, Hyun-Jung;Doh, Il;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.261-264
    • /
    • 2009
  • We present a three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. The dielectric structure between two planar electrodes induces the maximum electric field at the center of the microchannel, and particles are focused to the center of the microchannel by pDEP as they flow from the single sample injection port. Compared to the previous 3D particle focusing methods, the present device achieves the simple and effective particle focusing function without any additional fluidic ports and top electrodes. In the experimental study, approximately 90 % focusing efficiency were achieved within the focusing length of 2mm, on both x-z plane (top-view) and y-z plane (side-view) for $2{\mu}m$-diameter polystyrene (PS) bead at the applied voltage over 15 Vp-p (square wave) and at the flow rate below 0.01 ${\mu}l$/min. The present 3D particle focusing channel results in a simple particle focusing method suitable for use in integrated microbiochemical analysis system.