Browse > Article
http://dx.doi.org/10.3807/JOSK.2012.16.3.305

Active Focusing of Light in Plasmonic Lens via Kerr Effect  

Nasari, Hadiseh (Department of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Abrishamian, Mohammad Sadegh (Department of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Publication Information
Journal of the Optical Society of Korea / v.16, no.3, 2012 , pp. 305-312 More about this Journal
Abstract
We numerically demonstrate the performance of a plasmonic lens composed of an array of nanoslits perforated on thin metallic film with slanted cuts on the output surface. Embedding Kerr nonlinear material in nanoslits is employed to modulate the output beam. A two dimensional nonlinear-dispersive finite-difference time-domain (2D N-D-FDTD) method is utilized. The performance parameters of the proposed lens such as focal length, full-width half-maximum, depth of focus and the efficiency of focusing are investigated. The structure is illuminated by a TM-polarized plane wave and a Gaussian beam. The effect of the beam waist of the Gaussian beam and the incident light intensity on the focusing effect is explored. An exact formula is proposed to derive electric field E from electric flux density D in a Kerr-Dispersive medium. Surface plasmon (SPs) modes and Fabry-Perot (F-P) resonances are used to explain the physical origin of the light focusing phenomenon. Focused ion beam milling can be implemented to fabricate the proposed lens. It can find valuable potential applications in integrated optics and for tuning purposes.
Keywords
Plasmonics; MIM waveguide; N-D-FDTD;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 A. Toflaove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd ed. (Artech House, Boston, USA, 2005).
2 J. B. Judkins and R. W. Ziolkowski, "Finit-difference time-domain modeling of nonperfectly conducting metallic thin film grating," J. Opt. Soc. Am. A 12, 1974-1983 (1995).   DOI   ScienceOn
3 M. J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, USA, 2003).
4 G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, "Optical bistability in metal-insulator-metalic plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium," Opt. Express 50, 5287-5290 (2011).
5 S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
6 M. A. Swillam, N. Rotenberg, and H. M. van Driel, "All-optical ultrafast control of beaming through a single subwavelength aperture in a metal film," Opt. Express 19, 7856-7864 (2011).   DOI
7 M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, "Plasmonic nano-structures for optical data storage," Proc. SPIE 7505, 75050I (2009).
8 J. H. Zhu, X. G. Huang, and X. Mei, "Plasmonic electrooptical switches operating at telecom wavelengths," Plasmonics 6, 605-612 (2011).   DOI
9 M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, "Electrooptic modulation in thin film barium titanate plasmonic interferometers," Nano Lett. 8, 4048-4052 (2008).   DOI   ScienceOn
10 K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, "A gigahertz surface magneto-plasmon optical modulator," IEEE J. Quantum Electron. 40, 571-579 (2004).   DOI   ScienceOn
11 T. Nickolajsen, K. Leosson, and S. I. Bozhevonlyi, "In-line extinction modulator based on long- range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005).   DOI   ScienceOn
12 Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Mocrometerscale silicon electro-optic modulator," Nature Lett. 435, 325-327 (2005).   DOI   ScienceOn
13 D. Pacifici, H. J. Lezec, and H. A. Atwateri, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nature Photon. 1, 402-406 (2007).   DOI   ScienceOn
14 J. Tao, Q. J. Wang, and X. G. Huang, "All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material," Plasmonics 6, 753-759 (2011).   DOI
15 C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, "Beam manipulating by metallic nano-optic lens containing nonlinear media," Opt. Express 15, 9541-9546 (2007).   DOI
16 M. Bahramipanah, S. A. Mirtaheri, and M. S. Abrishamian, "Electrical beam steering with metal-anisotropic-metal structure," Opt. Lett. 37, 527-529 (2012).   DOI
17 Y. Pang, C. Genet, and T. W. Ebbesen, "Optical transmission through subwavelength slit apertures in metallic films," Opt. Commun. 280, 10-15 (2007).   DOI   ScienceOn
18 Y. Yu and H. Zappe, "Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design," Opt. Express 19, 9434-44 (2011).   DOI
19 F. J. G. Vidal, L. M. Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelngth aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).   DOI   ScienceOn
20 S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, "Optical beam focusing by a sigle subwavelength metal slit surrounded by chirped dielectric surface grating," Appl. Phys. Lett. 92, 013103 (2008).   DOI   ScienceOn
21 Y. Fu, Y. Liu, X. Zhou, Z. Xu, and F. Fang, "Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits," Opt. Express 18, 3438-3443 (2010).   DOI
22 F. M. Huang, T. S. Kao, V. A. Fedotov, and Y. Chen, "Nano hole array as a lens," Nano Lett. 8, 2469-2472 (2008).   DOI   ScienceOn
23 L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, "Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing," Nano Lett. 10, 1936-1940 (2010).   DOI   ScienceOn
24 H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005).   DOI
25 T. Xu, C. Wang, C. Du, and X. Luo, "Plasmonic beam deflector," Opt. Express 16, 4753-4759 (2008).   DOI
26 Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004).   DOI   ScienceOn
27 H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Opt. Express 19, 2911-2915 (2011).
28 C. Min and G. Veronis, "Absorption switches in metaldielectric- metal plasmonic waveguides," Opt. Express 17, 10757-10766 (2009).   DOI
29 H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, "Tunable band-pass plasmonic waveguide filters with nanodisk resonators," Opt. Express 18, 17922-17927 (2010).   DOI
30 P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, "Plasmonic filters and directional couplers based on wide metal-insulatormetal structure," Opt. Express 19, 7633-7639 (2011).   DOI
31 A. Setayesh, S. R. Mirnaziri, and M. S. Abrishamian, "Numerical investigation of tunable band-pass/band-stop plasmonic filters with hollow core circular ring resonator," J. Opt. Soc. Korea 15, 82-89 (2011).   DOI   ScienceOn
32 H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Opt. Express 13, 10795-10800 (2005).   DOI
33 K. M. Byun, "Development of nanostructured plasmonic substrates for enhanced optical biosensing," J. Opt. Soc. Korea 14, 65-76 (2010).   DOI   ScienceOn
34 T. W. Lee and S. K. Gray, "Subwavelength light bending by metal slit structures," Opt. Express 13, 9652-9659 (2005).   DOI
35 J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, "A wide bandgap plasmonic bragg reflactor," Opt. Express 16, 4888-4894 (2008).   DOI
36 Y. Zhao, S. C. S. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, "Beam bending via plasmonic lenses," Opt. Express 18, 23458-23465 (2010).   DOI
37 S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, "Miniature circular polarization analyzer with spiral plasmonic lens," Opt. Lett. 34, 3047-3049 (2009).   DOI   ScienceOn
38 A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, "Efficient coupling and field enhancement for the nano-scale: plasmonic needle," Opt. Express 18, 14079-14086 (2010).   DOI
39 W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).   DOI   ScienceOn
40 S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mat. 2, 229-232 (2003).   DOI   ScienceOn
41 S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).   DOI   ScienceOn
42 A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Express 16, 5252-5260 (2008).   DOI
43 J. C. Weeber, A. Dereux, C. Girard, J. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light, " Phys. Rev. B 60, 9061-9068 (1999).   DOI
44 T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Efficient excitation of dielectric-loaded surface plasmonpolariton waveguide modes at telecommunication wavelength," Phys. Rev. B 78, 165431 (2008).   DOI   ScienceOn
45 J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: toward chip-scale propagation with subwavlength-scale localization," Phys. Rev. B 73, 035407 (2006).   DOI   ScienceOn
46 J. H. Zhu, Q. J. Wang, P. Shum, and X. G. Huang, "A nanoplasmonic high-passwavelength filter based on a metalinsulator- metal circuitous waveguide," IEEE Trans. Nano Tech. 10, 1357-1361 (2011).   DOI   ScienceOn
47 T. Tanemura, K. C. Balram, D. S. L. Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, "Multiplewavelength focusing of surface plasmons with a nonperiodic nanoslit coupler," Nano Lett. 11, 2693-2698 (2011).   DOI   ScienceOn
48 Y. Song, J. Wang, M. Yan, and M. Qiu, "Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter," J. Opt. 13, 75002 (2011).   DOI   ScienceOn
49 R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, "Plasmonics: the next chip-scale technology," Mater. Today 9, 20-27 (2006).
50 E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimentions," Science 311, 189-193 (2006).   DOI   ScienceOn
51 R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 106, 874-881 (1957).   DOI
52 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extra ordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1997).
53 L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, "Planer lenses based on nanoscale slit arrays in a metallic film," Nano Lett. 9, 235-238 (2009).   DOI   ScienceOn