• Title/Summary/Keyword: Electric Coupling

Search Result 444, Processing Time 0.022 seconds

Dependence of Extinction Ratio on the Carrier Transport in $1.55{\mu}m$ InGaAsP/InGaAsP Multiple-Quantum-Well Electroabsorption Modulators ($1.55{\mu}m$ InGaAsP/InGaAsP 다중양자우물구조 전계흡수형 광변조기에서 캐리어 수송현상이 소광특성에 미치는 영향)

  • Shim, Jong-In;Eo, Yung-Seon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.15-22
    • /
    • 2000
  • The effects of carrier transport and input power on the extinction ratio was theoretically analyzed in a 1.55${\mu}m$ InGaAsP/InGaAsP multiple-quantum-well(MQW) electroabsorption(EA) modulator. Poisson's equation, current continuity equations for electrons and holes, and optical field distribution were self-consistently solved by considering electric field dependent absorption coefficients. The field screening effect due to the carrier accumulation in heterointerface and the space-charge region occurred more seriously at the input side of modulator as input optical intensity increased. It was revealed that extinction ratio could be steeply degraded for modulator with the length of 200${\mu}m$ when an input power exceeds 10mW. A degradation of extinction ratio due to the field screening effect would be more significantly at high-performance devices such as a 1.55${\mu}m$DFB-LD/EA-modulator integrated source where optical coupling efficiency is almost complete or a very high-speed modulator with its length as short as a few tens ${\mu}m$.

  • PDF

Scan Blindness Analysis of 1D and 2D Ka-Band Printed Dipole Array Antenna (일차원과 이차원 Ka-대역 프린티드 다이폴 배열 안테나의 스캔 블라인드니스 분석)

  • Koo, Hanni;Song, Sungchan;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.202-208
    • /
    • 2019
  • In this study, an active element pattern (AEP) of a printed dipole was analyzed in 1D and 2D arrays. First, an AEP of the printed dipole was obtained using the simulation in the 2D infinite array. The scan blindness in the 2D array occurred in the E-plane direction at around ${\pm}36^{\circ}$; however, it was barely observed in the 1D array. To analyze the cause of the scan blindness in the 2D array, the dispersion properties of a unit cell was obtained and compared with the scan blindness by frequency change. The difference between the scan blindness of the 1D and 2D arrays was clarified using the comparison of the Q value in the unit cell in the 1D and 2D arrays. Then, the coupling of the electric field in the E-plane direction was observed when nine elements were separated between the two ports in a linearly arranged dipole structure. Finally, the printed dipole array was fabricated, and an AEP was measured for the $11{\times}1$ and $11{\times}3$ sub arrays. The proposed theory was verified using these observations and by comparison with the simulation results.

Practical Guide to the Characterization of Piezoelectric Properties (압전재료의 기초 물성 측정)

  • Kang, Woo-Seok;Lee, Geon-Ju;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.301-313
    • /
    • 2021
  • Theoretical background for the meaning of various piezoelectric properties can be easily found in a number of textbooks and academic papers. In contrast, how they are actually measured and characterized are rarely described, though this information would be the most important especially to the researchers who just started working on the field. It follows that this report was intended to provide a practical guidance for measuring basic but essential properties of ferroelectric-based piezoelectric materials. The discussion begins with how to measurement dielectric properties such as dielectric permittivity and loss (dissipation factor), followed by piezoelectric properties such as piezoelectric constants, electromechanical coupling factor, and quality factor as well as ferroelectric features, i.e., electric field dependent polarization hysteresis. Though our discussion here is limited to the techniques that are already well-standardized, it is expected to make a seed to be developed into more challenging and creative ones.

Magnetic and Electric Transport Properties of MnTe Thin Film Grown by Molecular Beam Epitaxy (분자선 증착법에 의해 성장한 MnTe 박막의 자기적 및 전기수송 특성)

  • Kim, Woo-Chul;Bae, Sung-Whan;Kim, Sam-Jin;Kim, Chul-Sung;Kim, Kwang-Joo;Yoon, Jung-Bum;Jung, Myung-Hwa
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • MnTe layers of high crystalline quality were successfully grown on Si(100) : B and Si(111) substrates by molecular beam epitaxy (MBE). Under tellurium-rich condition and the substrate temperature around $400^{\circ}C$, a layer thickness of $700{\AA}$ could be easily obtained with the growth rate of $1.1 {\AA}/s$. We investigated the structural, magnetic and transport properties of MnTe layers by using x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and physical properties measurement system (PPMS). Characterization of MnTe layers on Si(100) : B and Si(111) substrates by XRD revealed a hexagonal structure of polycrystals with lattice parameters, ${\alpha}=4.143{\pm}0.001{\AA}\;and\;c=6.707{\pm}0.001{\AA}$. Investigation of magnetic and transport properties of MnTe films showed anomalies unlike antiferromagnetic powder MnTe. The temperature dependence of the magnetization data taken in zero-field-tooling (ZFC) and field-cooling (FC) conditions indicates three magnetic transitions at around 21, 49, and 210 K as well as the great irreversibility between ZFC and FC magnetization in the films. These anomalies are attributable to a magnetic-elastic coupling in the films. Magnetization measurements indicate ferromagnetic behaviour with hysteresis loops at 5 and 300 K for MnTe polycrystalline film. The coercivity ($H_c$) values at 5 and 300 K are 55 and 44 Oe, respectively. In electro-transport measurements, the temperature dependence of resistivity revealed a noticeable semiconducting behaviours and showed conduction via Mott variable range hopping at low temperatures.