Browse > Article
http://dx.doi.org/10.5515/KJKIEES.2019.30.3.202

Scan Blindness Analysis of 1D and 2D Ka-Band Printed Dipole Array Antenna  

Koo, Hanni (Department of Electrical and Computer Engineering, INMC, Seoul National University)
Song, Sungchan (Radar.PGM R&D Center, Hanwha Systems Co., Ltd.)
Nam, Sangwook (Department of Electrical and Computer Engineering, INMC, Seoul National University)
Publication Information
Abstract
In this study, an active element pattern (AEP) of a printed dipole was analyzed in 1D and 2D arrays. First, an AEP of the printed dipole was obtained using the simulation in the 2D infinite array. The scan blindness in the 2D array occurred in the E-plane direction at around ${\pm}36^{\circ}$; however, it was barely observed in the 1D array. To analyze the cause of the scan blindness in the 2D array, the dispersion properties of a unit cell was obtained and compared with the scan blindness by frequency change. The difference between the scan blindness of the 1D and 2D arrays was clarified using the comparison of the Q value in the unit cell in the 1D and 2D arrays. Then, the coupling of the electric field in the E-plane direction was observed when nine elements were separated between the two ports in a linearly arranged dipole structure. Finally, the printed dipole array was fabricated, and an AEP was measured for the $11{\times}1$ and $11{\times}3$ sub arrays. The proposed theory was verified using these observations and by comparison with the simulation results.
Keywords
Printed Dipole Array; Active Element Pattern; Scan Blindenss; Dispersion Relations;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Bhattacharyya, Phased Array Antennas, Hoboken, NJ, John Wiley & Sons, 2006.
2 D. Pozar, M. Schaubert, "Scan blindness in infinite phased arrays of printed dipoles," IEEE Transactions on Antennas and Propagation, vol. 32, no. 6, pp. 602-610, Jun. 1984.   DOI
3 D. M. Pozar, "Analysis of finite phased arrays of printed dipoles," IEEE Transactions on Antennas and Propagation, vol. 33, no. 10, pp. 1045-1053, Oct. 1985.   DOI
4 D. M. Pozar, "Finite phased arrays of rectangular microstrip patches," IEEE Transactions on Antennas and Propagation, vol. 34, no. 5, pp. 658-665, May 1986.   DOI
5 C. Sabatier, "T-dipole arrays for mobile applications," IEEE Antennas and Propagation Magazine, vol. 45, no. 6, pp. 9-26, Dec. 2003.   DOI
6 S. X. Ta, H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2183-2186, 2017.   DOI
7 C. A. Balanis, Antenna Theory: Analysis and Design, Hoboken, NJ, John Wiley & Sons, 2005.
8 R. L. Li, B. Pan, T. Wu, K. Lim, J. Laskar, and M. M. Tentzeris, "Equivalent-circuit analysis and design of a broadband printed dipole with adjusted integrated balun and a printed array for base station applications," IEEE Transactions on Antennas and Propagation, vol. 57, no. 7, pp. 2180-2184, Jul. 2009.   DOI
9 S. G. Lee, J. H. Lee, "Calculating array patterns using an active element pattern method with ground edge effects," Journal of Electromagnetic Engineering and Science, vol. 18, no. 3, pp. 175-181, 2018.   DOI
10 A. K. Bhattacharyya, "An accurate model for finite array patterns based on Floquet modal theory," IEEE Transactions on Antennas and Propagation, vol. 63, no. 3, pp. 1040-1047, Mar. 2015.   DOI
11 D. M. Pozar, D. H. Schaubert, "Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds," IEEE Transactions on Antennas and Propagation, vol. 32, no. 10, pp. 1101-1107, Oct. 1984.   DOI