• 제목/요약/키워드: Electric Charge-discharge

검색결과 242건 처리시간 0.021초

상업용 활성탄의 후처리에 의하여 제조된 전기이중층 커패시터용 전극재의 특성 (Performance of EDLC Electrodes Prepared by Post Treatments of Commercial Activated Carbon)

  • 우징유;홍익표;김명수
    • 한국응용과학기술학회지
    • /
    • 제30권2호
    • /
    • pp.362-370
    • /
    • 2013
  • Coconut shell 계 상용 활성탄을 후처리하여 EDLC 전극재로 적용하였다. Coconut shell계 활성탄을 별도의 처리없이 EDLC 전극재로 사용하였을 때, 초기 무게용량 및 부피용량은 66 F/g 및 39 F/cc이었고, 100 사이클 충 방전을 반복한 후, 각각 54 F/g 및 32 F/cc로 감소하여 82%의 충 방전효율을 나타내었다. 충 방전 반복에 따른 용량의 감소폭이 크며, CV 특성에서 부반응에 의한 분극현상이 발생하여 전극재로 적합하지 않았다. 상업용 활성탄에 포함된 불순물을 효율적으로 제거하기 위하여 알칼리 및 산 처리를 하였고, 그 후 세공 분포와 표면의 산성 관능기 함량을 제어하기 위하여 질소 분위기에서 열처리하였다. 알칼리 및 질산처리 한 후 $800^{\circ}C$에서 열처리한 전극재의 경우, 초기부피용량 44 F/cc, 100사이클 후 42 F/cc로서 실용화 가능한 수준의 높은 부피용량 및 95% 이상의 높은 충 방전 효율을 나타내었다.

다른 pH의 전해질에서 polyvinylidene chloride-resin와 polyvinylidene fluoride로부터 합성된 다공성 탄소의 전하 저장 거동 (Charge Storage Behavior of the Carbons Derived from Polyvinylidene Chloride-resin and Polyvinylidene Fluoride in Different pH Electrolytes)

  • 전상은
    • Composites Research
    • /
    • 제35권6호
    • /
    • pp.394-401
    • /
    • 2022
  • Polyvinylidene chloride-resin(PVDC-resin)와 polyvinylidene fluoride(PVDF)의 두 폴리머 전구체는 열분해 과정을 통해 마이크로 다공성 탄소로 변환되어 되므로 이온 흡/탈착으로 전하를 저장하는 슈퍼커패시터용 전극재료로 유리하다. 더욱이, 두 전구체를 구성하는 여러가지 이종원소들은 탄화 후 작용기를 형성하여 추가적인 전하저장에 기여할 수 있으므로, 탄화 시 생성되는 작용기에 대한 분석은 에너지 저장용 탄소소재를 개발하는데 중요하다. 본 연구에서는 두 폴리머 전구체를 탄화시킨 후 생성된 작용기를 X-선 광전자 분광법(X-ray photoelectron spectroscopy)과 다양한 pH의 전해질에서 탄소 전극의 전기화학 거동 관찰을 통하여 확인하였다. 산성(1 M H2SO4) 전해질에서 측정된 두 탄소 전극의 비전기용량은 생성된 quinone 작용기의 패러데익 충/방전 반응 덕분에 중성 전해질(0.5 M Na2SO4)에서보다 증가하였다. 특히, PVDC-resin으로부터 합성된 탄소는 매우 작은 마이크로 기공이 표면에 형성되어 있어 전해질 이온의 흡착을 어렵게 하므로, PVDF로부터 합성된 탄소 전극에 비해 낮은 용량을 보인다. 염기성 전해질(6 M KOH)에서 두 탄소 전극 모두 3가지 전해질 중 가장 높은 비전기용량이 측정되었는데, 이는 구성하는 전해질 이온들(K+, OH-)이 두 탄소에 형성된 마이크로 기공으로 흡/탈착이 용이하게 일어나는 동시에 패러데익 충/방전 반응으로 추가적인 전하가 저장되었기 때문이다.

리튬 배터리 등가모델의 정확도 개선을 위한 SOC 계수 보정법 (A SOC Coefficient Factor Calibration Method to improve accuracy Of The Lithium Battery Equivalence Model)

  • 이대건;정원재;장종은;박준석
    • 전자공학회논문지
    • /
    • 제54권4호
    • /
    • pp.99-107
    • /
    • 2017
  • 본 논문은 기존의 리튬 배터리(lithium battery) 등가모델의 정확도 개선을 위한 배터리 모델 계수 보정기법을 제안한다. 전기자동차 등 다양한 산업분야에 사용되는 리튬 배터리의 배터리 셀간 잔존용량(SOC, state of charge) 동일하게 유지하여 배터리 수명의 단축을 최소화하기 위해 BMS(battery management system)가 연구 개발 되었지만, 배터리 셀 전압 기반의 셀 밸런싱(cell balancing) 동작으로 내부저항 및 커패시터에 따른 SOC 변화를 따라가지 못한다. 배터리 내부저항 및 커패시터에 따른 배터리 SOC 추정을 위해 다양한 배터리 등가모델이 연구되었지만, 모든 배터리에 동일하게 적용하는 것은 한계가 있으며 특히 과도상태의 배터리 상태 추정이 어렵다. 기존의 배터리 전기적 등가모델 연구는 1종의 배터리를 대상으로 5~10% 오차율로 충 방전 동적특성을 모사하며 서로 다른 전기적 특성을 갖는 실제 배터리에 적용이 부적합하다. 따라서 본 논문에서는 모델 및 용량이 다른 실제 배터리 운용환경에 적합하며 오차율 5%이하의 동적특성 모사가 가능한 배터리 모델 계수 보정 알고리즘을 제안한다. 제안하는 배터리 모델 계수 보정법 검증을 위해 3.7 V 정격전압, 280 mAh, 1600 mAh 용량의 리튬 배터리를 사용하였으며, 리튬 배터리의 전기적 등가 모델로 2단 RC Tank 모델을 사용하였다. 또한 0.25C, 0.5C, 0.75C, 1C 4가지 C-rate를 사용하여 배터리 충 방전 실험 및 모델검증을 진행하였으며 제안하는 배터리 모델 계수 보정 알고리즘을 통해 구현한 두 종류의 배터리 모델의 배터리 충 방전 특성 및 과도상태 특성의 오차율은 최대 2.13%이다.

에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구 (Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System)

  • 박병준;유선미;양성은;한상철;노태무;이영희;한영희
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.209-213
    • /
    • 2019
  • 최근 전력 계통에 사용되는 주파수 조정용(F/R) 에너지 저장장치에 대하여 높은 에너지 밀도와 장수명의 안정성에 대한 요구가 증대되고 있다. 이와 관련하여 슈퍼커패시터는 장수명과 급속 충방전 특성이 우수하므로 이러한 F/R 적용을 위한 에너지 저장장치로 적합하게 여겨지고 있다. 슈퍼커패시터는 단주기 F/R 영역의 보완 운전을 담당하고 전력계통에 설치된 ESS의 장주기 운영 수명을 연장함으로써 기존 용량을 담당하는 리튬 배터리의 설치 규모와 양을 획기적으로 줄일 수 있다. 하지만 낮은 에너지 밀도는 전력 계통과 같은 큰 시스템에서 적용에 한계가 있으며 여전히 배터리를 대체할 수 있는 높은 에너지 밀도 요구에 어려움을 겪고 있다. 그러나 최근에는 리튬이온 커패시터(Lithium ion capacitor; LIC) 구조가 3.8 V 이상의 전압 구간을 구현할 수 있기 때문에 전기이중층 커패시터(Electric double layer capacitor; EDLC) 구조보다 고에너지 밀도 구현을 위한 구조로 각광을 받고 있지만 여전히 상용화를 위해서는 여러가지 전기화학적 성능에 대한 구체적인 검증 및 개발이 필요한 실정이다. 본 연구에서는 LIC의 에너지 밀도와 관계되는 용량을 증대하기 위하여 새로운 전극사전-도핑 방법을 설계하였다. 양극 활물질은 0.1% 이하의 상대습도 분위기 드라이룸에서 기계적 강도와 음극 도핑을 안정되게 수행될 수 있도록 $100{\mu}m$의 두께로 제작되었다. 또한 접촉 저항을 최소화하기 위하여 제조된 전극은 상온에서 $65^{\circ}C$까지 열 압축공정을 실시하였다. 최종적으로 LIC 구조에 대한 다양한 사전-도핑법을 설계하고 그 메커니즘을 분석하여 용량과 전기화학적 안정성이 향상된 새로운 LIC 사전-도핑 방법을 제안하였다.

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • 강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

홀소자와 자기코어를 이용한 하이브리드 및 전기자동차용 전류센서 제작 (Construction of Current Sensor Using Hall Sensor and Magnetic Core for the Electric and Hybrid Vehicle)

  • 연교흠;김시동;손대락
    • 한국자기학회지
    • /
    • 제23권2호
    • /
    • pp.49-53
    • /
    • 2013
  • 전류센서는 하이브리드 및 전기자동차의 배터리 충 방전과 모터컨트롤러의 모니터링 시스템에 적용되는 중요한 부품이다. 본 연구에서는 자기코어의 공극에 홀센서를 위치시켜 측정전류에 의해 생성된 자기장을 감지하는 구조를 가진 open loop type의 전류센서를 개발하였다. 코어는 방향성규소강판을 사용하여 제작한 후 공극이 3 mm되게 절단하였다. 공극에서의 자기장 측정을 위하여 GaAs 홀센서를 적용하였다. 개발한 전류센서는 측정범위가 -400~+400 A에서 선형도 0.03 %를 확보하였으며, 온도보상회로를 적용하여 동작온도영역인 $-40{\sim}+105^{\circ}C$에서 전류센서의 온도특성을 향상시켰다. 전류센서의 동특성 향상을 위하여 공기자속를 제어하였다. 주파수대역폭 측정은 $40A{\cdot}turn$, 100 Hz~100 kHz의 사인파형으로 측정하여 100 kHz의 대역폭을 갖는 것으로 평가되었으며, 반응속도는 $40A{\cdot}turn$의 5 kHz 구형파로 측정하여 $2{\mu}s$ 이하의 성능을 갖는 것으로 측정되었다.

전바나듐계 레독스-흐름 전지용 IPA-co-HDO-co-(TPA/MA) 음이온교환막의 합성 및 특성 (Synthesis and Characterization of IPA-co-HDO-co-(TPA/MA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery)

  • 정재철;곽노석;황택성
    • 폴리머
    • /
    • 제35권6호
    • /
    • pp.593-598
    • /
    • 2011
  • 본 연구에서는 전바나듐 레독스-흐름 전지용 음이온교환막의 제조를 위하여 isophthalic acid (IPA), 1,6-hexanediol(HDO), terephthalic acid(TPA), maleic anhydride(MA)의 용융 축합중합 방법에 의해 IPA-co-HDO-co-(TPA/MA)(IHTM) 공중합체를 합성하였다. 합성된 IHTM 공중합체 아민화 반응을 trimethylamine으로 하였으며, UV 가교 반응을 통하여 음이온교환막을 제조하였다. IHTM 공중합체의 구조 및 열안정성을 FTIR, $^1H$ NMR, TGA 분석을 통하여 확인하였다. 또한 IHTM 음이온교환막의 함수율, 이온교환용량, 전기저항, 전기전도도를 중량법, 적정법 및 LCR 미터로 측정하였으며, 전바나듐 레독스-흐름 전지의 효율 실험을 하였다. 막의 이온교환용량, 전기저항, 전기전도도는 각각 1.10 meq/g, $1.98{\Omega}{\cdot}cm^2$, 0.009 S/cm로 우수하게 나타났으며, 전바나듐 레독스-흐름 전지의 충 방전효율, 전압효율 및 에너지효율은 각각 96.5, 74.6, 70.0%이었다.

활성탄의 후 처리에 의한 EDLC 전극재의 전기화학 성능 개선 (Electrochemical Performance of Activated Carbon Electrode Materials with Various Post Treatments for EDLC)

  • 이은지;권순형;최푸름;정지철;김명수
    • 한국재료학회지
    • /
    • 제24권6호
    • /
    • pp.285-292
    • /
    • 2014
  • Commercial activated-carbon used as the electrode material of an electric double-layer capacitor (EDLC) was posttreated with various acids and alkalis to increase its capacitance. The carbon samples prepared were then heat-treated in order to control the amount of acidic functional groups formed by the acid treatments. Coin-type EDLC cells with two symmetric carbon electrodes were assembled using the prepared carbon materials and an organic electrolyte. The electrochemical performance of the EDLC was measured by galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the various activated carbons, the carbon electrodes (CSsb800) prepared by the treatments of coconutshell-based carbon activated with NaOH and $H_3BO_5$, and then heat treated at $800^{\circ}C$ under a flow of nitrogen gas, showed relatively good electrochemical performance. Although the specific-surface-area of the carbon-electrode material ($1,096m^2/g$) was less than that of pristine activated-carbon ($1,122m^2/g$), the meso-pore volume increased after the combined chemical and heat treatments. The specific capacitance of the EDLC increased from 59.6 to 74.8 F/g (26%) after those post treatments. The equivalent series resistance of EDLC using CSsb800 as electrode was much lower than that of EDLC using pristine activated carbon. Therefore, CSsb800 exhibited superior electrochemical performance at high scan rates due to its low internal resistance.

Expanded Graphite Negative Electrode for Lithium-ion Batteries

  • Yoo, Hyun-D.;Ryu, Ji-Heon;Park, Seong-Ho;Park, Yu-Won;Ka, Bok-H.;Oh, Seung-M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.45-50
    • /
    • 2011
  • A series of expanded graphites is prepared from graphite oxide by changing the heat-treatment temperature, and their lithiation/de-lithiation mechanism and rate performance are examined. A featureless sloping profile is observed in their charge-discharge voltage and dilatometry profiles, which is contrasted by the stepwise plateau-like profiles observed with the pristine graphite. With an increase in the heat-treatment temperature from $250^{\circ}C$ to $850^{\circ}C$, the interlayer distance becomes smaller whereas the electric conductivity becomes larger, both of which are resulted from a removal of foreign atoms (mainly oxygen) from the interlayer gaps. The expanded graphite that is prepared by a heat-treatment at $450^{\circ}C$ delivers the best rate performance, which seems to be a trade-off between the $Li^+$ ion diffusivity that is affected by the interlayer distance and electrical conductivity.

슈퍼 커패시터를 이용한 직류철도 회생에너지 저장장치 (DC Traction Regenerative Energy Storage Devices using Super-capacitor)

  • 김종윤;정두용;장수진;이병국;원충연
    • 전력전자학회논문지
    • /
    • 제13권4호
    • /
    • pp.247-256
    • /
    • 2008
  • 직류철도의 회생제동 시 발생되는 회생에너지는 급전선로의 직류가선전압의 상승에 의해 시스템의 오동작이나 차량 정류기의 파손, 또는 급전 시스템의 전력변환 장치의 고장을 일으키는 원인이 될 수 있다. 슈퍼 커패시터를 이용한 회생에너지 저장장치는 직류가선전압을 안정화 하게하는 방법이다. 본 논문에서는 슈퍼 커패시터 뱅크를 이용하여 직류철도 시스템의 에너지 저장장치를 구현하였고, 지하철 2호선 N역과 S역의 실측값을 이용하여 가선전압이 전동차에 의한 회생에너지 발생에 따른 동작 특성과 슈퍼 커패시터의 충 방전 특성을 확인하였다. 본 논문을 통하여 직류철도 시스템에 설치된 회생에너지 저장시스템용 슈퍼 커패시터 뱅크의 동작 특성을 알 수 있고, 향 후 직류철도 모든 변전소의 직류 가선전압 실측 데이터를 이용한다면, 특정 직류철도 운행 구간에 대한 회생에너지 저장장치의 운전특성과 슈퍼커패시터의 용량 및 수명 예측으로 가격을 절감 할 수 있고 전체 시스템의 안정도 와 신뢰성을 향상시킬 수 있다.