• Title/Summary/Keyword: Elastohydrodynamic

Search Result 107, Processing Time 0.021 seconds

Non-Steady Elastohydrodynamic Lubrication Analysis on Spur Gear Teeth

  • Kim, H.J.;Kim, Y.D.;Koo, Y.P.;Choi, H.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.81-82
    • /
    • 2002
  • A non-steady 3-dimensional elastohydrodynamic lubrication analysis was performed on the contacting teeth surfaces of involute spur gears. Kinematics of the gear and the pinion were taken into account to get accurate geometric clearance around the elastohydrodynamic lubrication region of the contacting teeth. Pressure and film thickness distribution for the whole contacting faces in lubricated condition at several time steps were obtained through the analysis. Besides the pressure spike at the outlet region, a representative phenomenon in elastohydrodynamic lubrication regime, the pressure at the inlet region was slight higher than that of the center region. The film thickness of non-steady condition was thicker than that of steady condition.

  • PDF

Elastohydrodynamic Lubrication Analysis on the Contacting Surfaces between Spur Gear Teeth (스퍼 기어 치면 사이의 탄성유체 윤활해석)

  • 구영필;김형자;김영대
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.65-71
    • /
    • 2003
  • An elastohydrodynamic lubrication analysis was performed on the contacting teeth surfaces of involute spur gears. Kinematics of the gear and the pinion were taken into account to get accurate geometric clearances around the elastohydrodynamic lubrication region of the contacting teeth. Pressure and film thickness distribution for the whole contacting faces in lubricated condition at several time steps were obtained through the analysis. Besides the pressure spike at the outlet region, a representative phenomenon in elastohydrodynamic lubrication regime, the pressure at the inlet region was slightly higher than that of the center region. The film thickness of transient condition was thicker than that of steady condition.

Elastohydrodynamic Lubrication on the Vane Tip of Vane Pump (베인 선단부의 탄성유체윤활)

  • 정석훈;정재연
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.54-61
    • /
    • 1994
  • The regimes of elastohydrodynamic lubrication at the points where line contacts occur between the vane tip and camring in an oil hydraulic vane pump is studied. A study of the contact conditions in vane pump provided most of the early interest in the possibility of fluid film lubrication in highly loaded contacts. The variation of viscosity with pressure and the elastic deformation associated with the high pressures generated in the contact region are the major causes of the complexity attributed to lubrication behavior. Therefore a numerical solutions to the problem of elastohydrodynamic lubrication of line contact are obtained by using a finite-difference formulation.

Flash Temperature of the Cam-Roller Contacting Surface in a Marine Diesel Engine (박용 디젤기관 캠-롤러 접촉부의 표면 상승 온도)

  • 김남식;김민남;구영필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.200-208
    • /
    • 2002
  • The flash temperature of the cam-roller contacting surface for a marine diesel engine was analysed numerically. The elastohydrodynamic lubrication pressure and film thickness were adopted to get more accurate frictional coefficient, heat flux and temperature distribution. The maximum flash temperature was increased with both the increasing slip ratio of the contacting surfaces and increasing external load. This study tells that the temperature analysis is an indispensable procedure in designing elastohydrodynamic lubrication contacts on which the slip occurs.

Elastohydrodynamic Lubrication Analysis on the Cam-Roller for a Marine Diesel Engine with Consideration of Roller Profiling (롤러 프로파일링을 고려한 박용 디젤기관 캠-롤러사이의 탄성유체윤활해석)

  • 구영필;조용주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.147-154
    • /
    • 2000
  • A numerical procedure to analyze 3-dimensional elastohydrodynamic lubrication was applied on the cam-roller contact of the valve mechanism for a marine diesel engine. Both the pressure distribution and the film thickness between the cam and roller follower were calculated for each time step of the whole cycle. The pressure spike is shown at the outlet of the roller edge and it is getting higher as the external load is increased. An effective profiling method for the roller edge was suggested using the results of elastohydrodynamic lubrication analysis and the peak pressure was removed completely with the new profiling.

  • PDF

Study on the Elliptical Elastohydrodynamic Lubrication in the Toroidal Continuously Variable Transmission (가변 동력전달 장치에서의 타원 형상 점접촉 탄성유체윤활 연구)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.310-315
    • /
    • 2001
  • The most general feature of contact zone among the mechanical components is elliptical circle. In particular, continuously variable transmission (CVT) of toroidal type has elliptical shape of contact zone under the elastohydrodynamic lubrication condition, where the power is transmitted by the shearing the efluid. Due to the traction of the shear behaviors of lubricant over the small elliptical contact zone, high power of torque is transmitted. During the power transmission, many kinds of mechanical movements occur such as squeezing, sliding, rolling and spinning. The spinning effect that is not common contact behavior in tribological components frequently makes significant abnormal wear damage. In this work, the analysis of elliptical contact of elastohydrodynamic lubrication with spin effect is performed, which will give very useful information to understand the traction behaviors in toroidal type of CVT system.

  • PDF

Contact Fatigue Life Prediction under Elliptical Elastohydrodynamic Lubrication (타원접촉 EHL 상태에서의 접촉피로수명 예측)

  • Kim, Tae-Wan;Lee, Sang-Don;Koo, Young-Pil;Cho, Yang-Joo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.320-328
    • /
    • 2006
  • In this study, the simulation of rolling contact fatigue based on stress analysis is conducted under Elastohydrodynamic Lubrication state. To predict a crack initiation life accurately, it is necessary to calculate contact stress and subsurface stresses accurately. Contact stresses are obtained by contact analysis of a semi-infinile solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. And a numerical algorithm using Newton-Rapson method was constructed to calculate the Elastohydrodynamic lubrication pressure. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated.

Non-Newtonian thermal Effects in Elastohydrodynamic Lubrication between the Two Rolling Systems

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.87-88
    • /
    • 2002
  • To analyze complicated phenomena on the fluid hydrodynamic and the elastic deformation between sliding body surfaces, an analysis to the elastohydrodynamic lubrication of sliding contacts has been developed taking into account the thermal and non-Newtonian effects. The computational technique handled the simultaneous solution of the non-Newtonian hydrodynamic effects, elasticity, the load, the viscosity variation, and temperatures rise. The results included the lubricant pressure profile, film thickness, velocity, shear stress, and temperature distribution, and the sliding frictional force on the surface at various slip conditions. These factors showed a great influence on the behavior resulted in the film shape and pressure distribution. Especially, Non-Newtonian effects and temperature rise by the sliding friction force acted as important roles in the lubrication performance.

  • PDF

Elastohydrodynamic Lubrication of a Profiled Cylindrical Roller (I) (프로파일링을 한 원통형 로울러의 탄성유체윤활 (I))

  • 박태조;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.262-270
    • /
    • 1988
  • A numerical solution of the elastohydrodynamic lubrication problem for an axially profiled cylindrical roller is presented. The problem is analyzed using finite difference method and Newton-Raphson method. The effect of side leakage and compressibility of lubricants are considered and axially nonuniform grid is constructed over the computation zone. Isobars, contours and section graphs show pressure variation and film shape. Contours plot is very similar to the previously reported experimental observations based upon optical interferometry. The maximum pressure and the minimum film thickness occur near the start of the profiling. The method used makes it possible to design an optimum axial profile of the roller to increase the life of rolling bearings.

Study on the Film Thickness and Pressure of the Transient Line Contact Elastohydrodynamic Lubrication (비정상 상태의 선접촉 탄성유체윤활 유막두께 및 유막압력 특성연구)

  • Cho, Jae-Cheol;Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.335-341
    • /
    • 2009
  • Elastohydrodynamic lubrication (EHL) analysis shows that film thickness is very flat in the contact area and pressure distribution is somehow similar to that of Hertzian contact pressure except the outlet region with pressure spike. These typical patterns of EHL film thickness and pressure are the cases under the steady contact conditions of applied loads and speeds. However, many engineering contacts are rather under the conditions of varying loads and contact speeds, and therefore the predictions for endurance life and performance of machine elements with steady EHL analysis are not suitable in many occasions. This study shows the differences in film thickness formation and pressure distribution between steady and transient contact conditions in several contact cases.