• Title/Summary/Keyword: Elasto-plastic Material

Search Result 224, Processing Time 0.028 seconds

Dynamic analysis of ACTIVE MOUNT using viscoelastic-elastoplastic material model

  • Park, Taeyun;Jung, Wonuk
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.137-147
    • /
    • 2016
  • The engine mount of a car subjected to a pre-load related to the weight of the engine, and acts to insulate the vibration coming from the engine by moving on large or small displacement depending on the driving condition of the car. The vibration insulation of the engine mount is an effect obtained by dissipating the mechanical energy into heat by the viscosity characteristic of the rubber and the microscopic behavior of the additive carbon black. Therefore, dynamic stiffness from the intrinsic properties of rubber filled with carbon black at the design stage is an important design consideration. In this paper, we introduced a hyper-elastic, visco-elastic and elasto-plastic model to predict the dynamic characteristics of rubber, and developed a fitting program to determine the material model parameters using MATLAB. The dynamic characteristics analysis of the rubber insulator of the ACTIVE MOUNT was carried out by using MSC.MARC nonlinear structural analysis software, which provides the dynamic characteristics material model. The analysis results were compared with the dynamic characteristics test results of the rubber insulator, which is one of the active mount components, and the analysis results were confirmed to be valid.

Hot Forming and Heat Treatment of the End-Bulkhead of a Pressure Hull (압력선체 경판의 열간 성형 및 열처리에 관한 연구)

  • 권일근;윤영철;윤중근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.21-24
    • /
    • 2003
  • In hot forming process of the backward end-bulkhead of a pressure hull, the blank diameter and the tool clearance are the critical factors which influence wrinkling defect, forming load and shape completeness of the product. Two F.E.A softwares with the elasto-plastic material model and rigid plastic model were utilized to predict the occurrence of wrinkling defect. Tool clearance was determined by considering the increase of blank thickness, die strength and the stretching effect. Heat treatment condition after the hot forming to recover the original properties of the material was estabilished by specimen-based heat treating experiment.

  • PDF

Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity

  • Bobinski, J.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.433-455
    • /
    • 2004
  • The paper presents results of FE-calculations on shear localizations in quasi-brittle materials during both an uniaxial plane strain compression and uniaxial plane strain extension. An elasto-plastic model with a linear Drucker-Prager type criterion using isotropic hardening and softening and non-associated flow rule was used. A non-local extension was applied in a softening regime to capture realistically shear localization and to obtain a well-posed boundary value problem. A characteristic length was incorporated via a weighting function. Attention was focused on the effect of mesh size, mesh alignment, non-local parameter and imperfections on the thickness and inclination of shear localization. Different methods to calculate plastic strain rates were carefully discussed.

An Experimental and Numerical Study on the Thermally Induced Residual Stress Effect in Metal Matrix Composites (열처리시 발생되는 잔류응력이 금속복합체에 미치는 영향에 관한 실험 및 수치해석적 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-117
    • /
    • 1997
  • A continuum analysis has been performed for the application to the thermo-elasto-plastic behavior in a discontinuous metal matrix composite. an FEM (Finite Element Method) analysis was implemented to obtain the internal field quantities of composite as well as overall composite behavior and an experiment was demonstrated to compare with the numerical simulation . As the procedure, a reasonably optimized FE mesh generation, the appropriate imposition of boundary condition , and the relevant post processing such as elastoplastic thermomchanical analysis were taken into account. For the numerical illustration, an aligned axisymmetric single fiber model with temperature dependent material properties and precipitation hardening effect has been employed to assess field quantities. It was found that the residual stresses are induced substantially by the temperature drop during the thermal treatment and that the FEM results of the vertically and horizontally constrained model give a good agreement with experimental data.with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

Analysis of Welding Distortion during the Production of Fuel Tanks for Excavators (연료탱크 제작시 시뮬레이션을 통한 용접변형 해석)

  • Yang, Young-Soo;Kim, Duck-Youn;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.24-34
    • /
    • 2016
  • To attach a fuel tank to an excavator, two sets of mounting plates on which three bosses are attached are welded onto the tank. In this study, the welding process of a fuel tank for an excavator was modeled using a finite element numerical method. The tank was modeled as a simple plate to which the mounting plate or bosses were attached by fillet welding. Thermal and thermo-elasto-plastic analyses of the welding process were carried out to predict the temperature distribution and material distortion during welding, respectively. Three different welding sequences for the tank were also modelled to compare the deformation that occurred due to each welding sequence. The results of the analysis predicted that changing the welding sequence around the mounting plate could not position the boss within the allowable dimensional range. The results also revealed the sequence in which the maximum distortion of the bosses welded onto the tank was 30% less than the maximum distortion due to the other sequences.

Failure mechanisms in coupled soil-foundation systems

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2018
  • Behavior of soil is usually described with continuum type of failure models such as Mohr-Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for engineering practice. However, the main shortcoming of these models is that they are not able to capture post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete beam lattice model against those obtained using the modified three-surface elasto-plastic cap model.

Nonlinear Analysis of Ship Plating under Lateral Loads. (횡하중(橫荷重)을 받는 선각판(船殼板)의 비선형(非線形) 해석(解析))

  • S.J.,Yim;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1980
  • The nonlinear analysis of ship plating with flat bar stiffners has been carried out by the finite element method based on the load incremental approach. The large deflection analysis has been done by using the Lagrangian description. The elastoplastic analysis has been performed by adopting the flow theory of plasticity and the von Mises yield condition. The layered elements are used to show the process of yielding through the plate thickness in the elasto-plastic analysis. The following results are obtained; 1) According to the large deflection analysis, it is shown that the small deflection theory to the plate is applicable in the range of the lateral deflection-the thickness ratio $w/h{\leqq}0.3$ and ship plating in the range of $w/h{\leqq}0.5$. 2) By means of the elasto-plastic analysis, it is found that the maximum load-carrying capacity of the plate increases as much as 1.8 times of the initial yield load in the case of the simply supported condition and 2.2 times in the clamped condition. It is also shown that the maximum load-carrying capacity of ship plating increase as much as 4.3 times in the simply supported condition and 4.2 times in the clamped condition. This method would be applied and extended to solve combined nonlinear problems which involve both material nonlinearity and geometric nonlinearity.

  • PDF

Finite Element Analysis Through Mechanical Property Test and Elasto-plastic Modeling of 2.5D Cf/SiCm Composite Analysis (2.5D Cf/SiCm 복합재의 기계적 물성 시험과 탄소성 모델링을 통한 유한요소해석)

  • Lee, MinJung;Kim, Yeontae;Lee, YeonGwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.663-670
    • /
    • 2020
  • A study on mechanical property characterization and modeling technique was carried out to approximate the behaviour of structures with 2.5D C/SiC material. Several tensile tests were performed to analyze the behaviour characteristics of the 2.5D C/SiC material and elastic property was characterized by applying a mathematical homogenization and a modified rule of mixture. SiC matrix representing the elasto-plastic behavior approximates as a bilinear function. Then the equivalent yield strength and equivalent plastic stiffness were calculated by minimizing errors in experiment and approximation. RVE(Representative Volume Element)was defined from the fiber and matrix configuration of 2.5D C/SiC and a process of calculating the effective stiffness matrix by applying the modified rule of mixture to RVE was implemented in the ABAQUS User-defined subroutine. Finite element analysis was performed by applying the mechanical properties of fiber and matrix calculated based on the proposed process, and the results were in good agreement with the experimental results.

Effects of thickness variations on the thermal elastoplastic behavior of annular discs

  • Wang, Yun-Che;Alexandrov, Sergei;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.839-856
    • /
    • 2013
  • Metallic annular discs with their outer boundary fully constrained are studied with newly derived semi-analytical solutions for the effects of thickness variations under thermal loading and unloading. The plane stress and axisymmetric assumptions were adopted, and the thickness of the disk depends on the radius hyperbolically with an exponent n. Furthermore, it is assumed that the stress state is two dimensional and temperature is uniform in the domain. The solutions include the elastic, elastic-plastic and plastic-collapse behavior, depending on the values of temperature. The von Mises type yield criterion is adopted in this work. The material properties, Young's modulus, yield stress and thermal expansion coefficient, are assumed temperature dependent, while the Poisson's ratio is assumed to be temperature independent. It is found that for any n values, if the normalized hole radius a greater than 0.6, the normalized temperature difference between the elastically reversible temperature and plastic collapse temperature is a monotonically decreasing function of inner radius. For small holes, the n values have strong effects on the normalized temperature difference. Furthermore, it is shown that thickness variations may have stronger effects on the strain distributions when temperature-dependent material properties are considered.

탄.소성 Work-Hardening 모델에 대한 Program 개발 -Lade 모델을 중심으로-

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.255-270
    • /
    • 1991
  • In recent years. finite element methods have been used with increasing effectiveness in analysis of displacements and stresses within soil masses. However, one of the weakest links in the analytical representations used in these methods is the models of the material behaviour. Herein is discribed a modification to the finite element methods that allows solution problems with realistic stress-strain relation for soils. A finite element program for the precision prediction of the stress distribution within foundation has been developed using the elasto-plastic Work-Hardening model. The developed program is verified by comparing the results of this study with the tested results for Sacramento river sand. The main results obtained from the numerical examples are as follows: The vertical total stress increments are insensitive to drainage and constitutive equation of materials. The horizontal total stress increments are considerably affected by the drainage and constitutive equation of materials. The maximum shear stresses are affected by the drainage only in elasto-ptastic meterirals. The excess pore water pressures and the volumetric strains not only are considerably affected by the constitutive equation of materials. but also have almost similar distribution.

  • PDF