DOI QR코드

DOI QR Code

Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity

  • Bobinski, J. (Civil Engineering Department, Gdansk University of Technology) ;
  • Tejchman, J. (Civil Engineering Department, Gdansk University of Technology)
  • Received : 2004.01.05
  • Accepted : 2004.11.10
  • Published : 2004.11.25

Abstract

The paper presents results of FE-calculations on shear localizations in quasi-brittle materials during both an uniaxial plane strain compression and uniaxial plane strain extension. An elasto-plastic model with a linear Drucker-Prager type criterion using isotropic hardening and softening and non-associated flow rule was used. A non-local extension was applied in a softening regime to capture realistically shear localization and to obtain a well-posed boundary value problem. A characteristic length was incorporated via a weighting function. Attention was focused on the effect of mesh size, mesh alignment, non-local parameter and imperfections on the thickness and inclination of shear localization. Different methods to calculate plastic strain rates were carefully discussed.

Keywords

References

  1. Abaqus 6.1 Manuals(2001), Hibbitt, Karlsson and Sorensen lnc.
  2. Askes, H. and Sluys, L. J.(2003), "A classification of higher-order strain gradient models in damagemechanics", Arch. Appl. Mech., 53(5-6), 448-465.
  3. Akkermann J.(2000), "Rotationsverhalten von Stahlbeton-Rahmenecken", Dissertation, Universitat Fridericianazu Karlsruhe, Karlsruhe.
  4. Bazant, Z. P. and Cedolin, L.(1979), "Blunt crackband propagation in finite element analysis", J. Eng. Mech. Div. ASCE, 105(2), 297-315.
  5. Bazant, Z. P.(1986), "Mechanics of distributed cracking", Appl. Mech. Rev., 26, 675-705.
  6. Bazant, Z., Lin, F. and Pijaudier-Cabot, G.(1987), "Yield limit degradation: non-local continuum model with local strain", (ln Owen,ed.)., Proc. Int. Conf. Computational Plasticity, Barcelona, 1757-1780.
  7. Bazant, Z. P. and Lin, F.(1988), "Non-local yield limit degradation", Int. J. Num. Meth. Eng., 35, 1805-1823.
  8. de Borst, R., (1986), "Non-linear analysis of frictional materials", Ph. D. Thesis, Delft University.
  9. de Borst, R., Muhlhaus, H. B., Pamin, J. and Sluys, L. (1992), "Computational modelling of localization of deformation" (ln D. R. J. Owen, H. Onate & E. Hinton, eds), Proc. of the 3rd Int. Conf. Comp. Plasticity, Swansea: Pineridge Press, 483-508.
  10. Brinkgreve, R.(1994), "Geomaterial modelsand numerical analysis of softening", Dissertation, Delft University, 1-153.
  11. Chen, E. P. (1999), "Non-local effects on dynamic damage accumulation in brittle solids", Int. J. Num. Anal. Meth. Geomech. 23: 1-21. https://doi.org/10.1002/(SICI)1096-9853(199901)23:1<1::AID-NAG892>3.0.CO;2-R
  12. Chen, J., Yuan, H. and Kalkhof, D.(2001), "A nonlocal damage model for elastoplastic materials based ongradient plasticity theory", Report Nr. 01-13, Paul Scherrer lnstitut, 1-130.
  13. Donze, F. V., Magnier, S. A., Daudeville, L., Mariotti, C. and Davenne,L. (1999), "Numerical study of compressive behaviour of concrete at high strain rates", J. Eng. Mech., 1154-1163.
  14. Dragon, A. and Mroz, Z.(1979), "A continuum model for plastic-brittle behaviour ofrock and concrete", Int. J. Eng. Sci., 17.
  15. Eringen, A. C.(1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  16. Eringen, A. C.(1981), "On non-local plasticity", Int. J. Eng. Sci., 19, 1461-1474. https://doi.org/10.1016/0020-7225(81)90072-0
  17. Ganghoffer, J. F. and de Borst, R. (2000), "A new framework in nonlocal mechanics", Int. J. Eng. Sci., 38, 453-486. https://doi.org/10.1016/S0020-7225(99)00030-0
  18. Herrmann, H.J., Hansen, A. and Roux, S.(1989), "Fracture of disordered elastic lattices in two dimensions", Physical Rev. B, 39, 637-647. https://doi.org/10.1103/PhysRevB.39.637
  19. Hilleborg, A.(1985), "The theoretical basis of a method to determine the fracture energy of concrete", Materialsand Structures, 18, 291-296. https://doi.org/10.1007/BF02472919
  20. Hughes T. J. R. and Winget J.(1980), "Finite rotation effects in numerical integration of rate constitutiveequations arising in large deformation analysis", Int. J. Num. Methods Eng., 15, 1862-1867. https://doi.org/10.1002/nme.1620151210
  21. Ibrahimbegovic, A., Markovic, D. and Gatuingt, F.(2003), "Constitutive model of coupled damage-plasticity andits finite element implementatation", Eur. J. Finite Elem., 12(4), 381-405.
  22. Iirasek, M. and Rolshoven, S.(2003), "Comparison of integral-type nonlocal plasticity models for strain-softeningmaterials", Int. J. Eng. Sci., 41, 1553-1602. https://doi.org/10.1016/S0020-7225(03)00027-2
  23. Lade, P. V. and Jakobsen, K. P.(2002), "lncrementalization of a single hrdening constitutive model for frictionalmaterials", Int. J. Numer. Anal. Methodsin Geomech., 26, 647-659. https://doi.org/10.1002/nag.216
  24. Lemaitre, J.(1985), "Coupled elasto-plasticity and damage constitutive equations", Comput. Meth. Appl. Mech. Eng., 51, 31-49. https://doi.org/10.1016/0045-7825(85)90026-X
  25. Loret B. and Prevost J. H.(1990), "Dynamic strain localisation in elasto-visco-plastic solids, Part 1. General formulation and one-dimensional examples", Comput. Meth. Appl. Mech. Eng., 83, 247-273. https://doi.org/10.1016/0045-7825(90)90073-U
  26. Maier, T. (2002), "Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizitat", Ph. D. Thesis, University of Dortmund.
  27. Maier, T.(2003), "Nonlocal modelling of softening in hypoplasticity", Comput. Geotech. 30(7), 599-610. https://doi.org/10.1016/S0266-352X(03)00075-2
  28. Marcher, T. and vermeer, P. A. (2001), "Macro-modelling of softening in non-cohesive soils"(ln P. A. vermeer et al. eds), Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, Springer- Verlag, 89-110.
  29. Meftah, F. and Reynouard, J. M.(1998), "A multilayered mixed beam element on gradient plasticity for theanalysis of localized failure modes", Mechanics of Cohesive-Frictional Materials, 3, 305-322. https://doi.org/10.1002/(SICI)1099-1484(1998100)3:4<305::AID-CFM49>3.0.CO;2-G
  30. Menetrey, P. H. and Willam, K. J.(1995), "Triaxial failure criterion for concrete and its generalization", ACI Struct. J., 311-318.
  31. Muhlhaus, H. B.(1986), "Scherfugenanalyse bei Granularen Material im Rahmen der Cosserat-Theorie", Ingen. Archiv, 56, 389-399. https://doi.org/10.1007/BF02570619
  32. Muhlhaus, H. B. and Aifantis, E. C.(1991), "A variational principle for gradient plasticity", Int. J. Solids Struct., 28, 845-858. https://doi.org/10.1016/0020-7683(91)90004-Y
  33. Ortiz, M. and Simo, I. C.(1986), "An analysis of a new class of integration algorithms foe elastoplastic constitutive relation", Int. I. Num. Meth. in Eng., 23, 353-366. https://doi.org/10.1002/nme.1620230303
  34. Pamin, J.(1994), "Gradient-dependent plasticity in numerical simulation of localization phenomena", Ph. D. Thesis, University of Delft.
  35. Pamin, J. and de Borst, R.(1998), "Simulation of crack spacing using a reinforced concrete model with aninternal length parameter", Arch. Appl. Mech., 68(9), 613-625. https://doi.org/10.1007/s004190050191
  36. Peerlings, R. H. J., de Borst, R., Brekelmans, W. A. M. and Geers, M. G. D.(1998), "Gradient enhanced damage modelling of concrete fracture", Mech. Cohes.-Friction. Mater., 3, 323-342. https://doi.org/10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
  37. Pijaudier-Cabot, G. and Bazant, Z. P.(1987), "Nonlocal damage theory", ASCE J. Eng. Mech., 113, 1512 -1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
  38. Pijaudier-Cabot, G.(1995), "Non local damage", Continuum Models for Materials with Microstructure (ln H. B. Muhlhaus, ed.), John Wiley & Sons Ltd.
  39. Pietruszczak, S., Jiang, J. and Mirza, F. A.(1988), "An elastoplastic constitutve model for concrete", Int. J. Solids Struct., 24(7), 705-722. https://doi.org/10.1016/0020-7683(88)90018-2
  40. Place, D. and Mora, P.(2001), "A random lattice solid model for simulation off ault zone dynamics and fracture processes" (ln H. B. Muhlhaus et al. Eds.), Bifurcation and Localisation Theory in Geomechanics 321-333.
  41. di Prisco, M. and Mazars, J. (1996), "Crush-crack-a non-local damagemodel for concrete", Mechanics of Cohesive-Frictional Materials, 1, 321-347.
  42. di Prisco, C., lmposimato, S. and Aifantis, E. C.(2002), "A visco-plastic constitutive model for granulr soilsmodified according to non-local and gradient approaches", Int. J. Numer. Anal. Meth. Geomech., 26, 121-138. https://doi.org/10.1002/nag.195
  43. Ragueneau, F., Borderie, Ch. and Mazars, J.(2000), "Damage model for concrete-like materials coupling cracking and friction", Int. J. Num. Anal. Meth. Geomech. 5, 607-625.
  44. Sakaguchi, H. and Muhlhaus, H. B. (1997), "Mesh free modelling of failure and localisation in brittle materials", Deformation and Progressive Failure in Geomechanics(ln A. Asaoka, T. Adachi and F. Oka eds.) 15-21.
  45. Schanz, T.(1998), "A constitutive model for cemented sands", Localisation and Bifurcation Theory for Soils and Rocks(ln Adachi, Oka and Yashima eds.), Balkema, Rotterdam, 165-172.
  46. Shi, Q., Chang, C. S.(2003), "Numerical analysis for the effect of heterogeneity on shear band formation", Proc. 16th ASCE Eng. Mech. Conf., University of Washington, Seattle, 1-11.
  47. Sluys, L. J. (1992), "Wave propagation, localisation and dispersion in softening solids", Dissertation, Delft University of Technology, Delft.
  48. Sluys, L. J. and de Borst, R.(1994), "Dispersive properties of gradient and rate-dependent media", Mech. Mater. 183, 131-149.
  49. Stromberg, L. and Ristinmaa, M.(1996), "FE-formulation of nonlocal plasticity theory", Comput. Meth. Appl. Mech. Eng,. 136, 127-144. https://doi.org/10.1016/0045-7825(96)00997-8
  50. Tejchman, J. and Wu, W.(1993), "Numerical study on patterning of shear bands in a Cosserat continuum", Acta Mechanica, 99, 61-74. https://doi.org/10.1007/BF01177235
  51. Tejchman, J., Herle, J. and Wehr, J.(1999), "FE-Studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localisation", Int. J. Num. Meth. Geomech., 23, 2045-2074. https://doi.org/10.1002/(SICI)1096-9853(19991225)23:15<2045::AID-NAG48>3.0.CO;2-B
  52. Tejchman, J.(2003), "A non-local hypoplastic constitutive law to describe shear localisation in granular bodies", Arch. Hιdro-Engineering and Environmental Mech., 50(4), 229-250.
  53. Tejchman, J. (2004), "Comparative FE-studies of shear localizations in granular bodies within a polar and non-local hypoplasticity", Mech. Res. Comm. 31(3), 341-354. https://doi.org/10.1016/j.mechrescom.2003.11.009
  54. Tejchman, J. and Bobinski, J. (2004), "Non-local elasto-plastic model to simulate localization of deformation in concrete", Lecture during the Int. Conf. SEMC 2004, Cape Town, South Africa, 5-7.07.2004.
  55. Willam, K. J. and Warnke, E. P.(1975), "Constitutive model for the triaxial behaviour of concrete", IABSE Seminar on Concrete Structures subjected to triaxial Stress, Bergamo, Italy, 1-31.
  56. Vervuurt, A., van Mier, J. G. M. and Schlangen, E.(1994), "Lattice model for analyzing steel-concrete interactions", Comp. Meth. Geomech. (In Siriwardane and Zaman eds.), 713-718, Balkema, Rotterdam.
  57. Zbib, H. M. and Aifantis, C. E.(1989), "A gradient dependent flow theory of plasticity: application to metal andsoil instabilities", Appl. Mech. Reviews, 42(11), 295-304. https://doi.org/10.1115/1.3152414
  58. Zhou, W., Zhao, J., Liu, Y. and Yang, Q.(2002), "Simulation of localization failure with strain-gradient-enhanced damage mechnics", Int. J. Numer. Anal. Meth. Geomech. 26, 793-813. https://doi.org/10.1002/nag.225

Cited by

  1. Experimental Investigations of Fracture Process in Concrete by Means of X-ray Micro-computed Tomography vol.52, pp.1, 2016, https://doi.org/10.1111/str.12168
  2. Numerical Mesoscopic Analysis of Fracture in Fine-Grained Concrete vol.58, pp.3, 2012, https://doi.org/10.2478/v.10169-012-0019-7
  3. Comparison of continuous and discontinuous constitutive models to simulate concrete behaviour under mixed-mode failure conditions vol.40, pp.3, 2016, https://doi.org/10.1002/nag.2411
  4. FE investigations of the effect of fluctuating local tensile strength on coupled energetic–statistical size effect in concrete beams vol.103, 2015, https://doi.org/10.1016/j.engstruct.2015.09.011
  5. FE analysis of failure behaviour of reinforced concrete columns under eccentric compression vol.30, pp.2, 2008, https://doi.org/10.1016/j.engstruct.2007.03.024
  6. Effect of a characteristic length on crack spacing in a reinforced concrete bar under tension vol.34, pp.5-6, 2007, https://doi.org/10.1016/j.mechrescom.2007.04.002
  7. Experimental and numerical assessment of size effect in geometrically similar slender concrete beams with basalt reinforcement vol.141, 2017, https://doi.org/10.1016/j.engstruct.2017.03.011
  8. FE calculations of a deterministic and statistical size effect in concrete under bending within stochastic elasto-plasticity and non-local softening vol.48, 2013, https://doi.org/10.1016/j.engstruct.2012.09.013
  9. FE analysis of size effects in reinforced concrete beams without shear reinforcement based on stochastic elasto-plasticity with non-local softening vol.88, 2014, https://doi.org/10.1016/j.finel.2014.05.005
  10. Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending vol.29, pp.4, 2010, https://doi.org/10.1016/j.euromechsol.2010.02.008
  11. FE analysis of reinforced concrete corbels with enhanced continuum models vol.47, pp.9, 2011, https://doi.org/10.1016/j.finel.2011.03.022
  12. Modelling of fracture process in concrete using a novel lattice model vol.10, pp.5, 2008, https://doi.org/10.1007/s10035-008-0104-4
  13. Measurements and Calculations of the Width of the Fracture Process Zones on the Surface of Notched Concrete Beams vol.47, 2011, https://doi.org/10.1111/j.1475-1305.2008.00605.x
  14. Numerical analyses of novel prefabricated structural wall panels in residential buildings based on laboratory tests in scale 1:1 pp.2116-7214, 2018, https://doi.org/10.1080/19648189.2018.1474382
  15. Determination of representative volume element in concrete under tensile deformation vol.9, pp.1, 2012, https://doi.org/10.12989/cac.2012.9.1.035
  16. Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation vol.27, pp.2, 2004, https://doi.org/10.12989/cac.2021.27.2.111