• Title/Summary/Keyword: Elasto-plastic Material

Search Result 224, Processing Time 0.041 seconds

Damage analysis of three-leg jacket platform due to ship collision

  • Jeremy Gunawan;Jessica Rikanti Tawekal;Ricky Lukman Tawekal;Eko Charnius Ilman
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.385-399
    • /
    • 2023
  • A collision between a ship and an offshore platform may result in structural damage and closure; therefore, damage analysis is required to ensure the platform's integrity. This paper presents a damage assessment of a three-legged jacket platform subjected to ship collisions using the industrial finite element program Bentley SACS. This study considers two ships with displacements of 2,000 and 5,000 tons and forward speeds of 2 and 6.17 meters per second. Ship collision loads are applied as a simplified point load on the center of the platform's legs at inclinations of 1/7 and 1/8; diagonal bracing is also included. The jacket platform is modelled as beam elements, with the exception of the impacted jacket members, which are modelled as nonlinear shell elements with elasto-plastic material and constant isotropic hardening to provide realistic dented behavior due to ship collision load. The structural response is investigated, including kinetic energy transfer, stress distribution, and denting damage. The simulation results revealed that the difference in leg inclination has no effect on the level of localized denting damage. However, it was discovered that a leg with a greater inclination (1/8) resists structural displacement more effectively and absorbs less kinetic energy. In this instance, the three-legged platform collapses due to the absorption of 27.30 MJ of energy. These results provide crucial insights for enhancing offshore platform resilience and safety in high-traffic maritime regions, with implications for design and collision mitigation strategies.

The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite (금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구)

  • 백영민;이상관;엄문광;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

Stress and Displacement Analysis of Arctic Frostheave with Gas Pipeline using Finite Element Method (극한지 동상융기에 의한 가스배관과 토양의 응력 및 변위 해석)

  • Kim, Kyung Il;Yeom, Kyu Jung;Oh, Kyu Hwan;Kim, Woo Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.47-53
    • /
    • 2015
  • According to the interest of the arctic's resources rising, many countries are making moves to develop these resources. Korea has also undergone negotiations with Russia to develop natural gas resources in Siberia, which is geographically relatively close. However, the Arctic resources market is dominate, it is essential to develop construction techniques that are suited for the Arctic. Gas pipelines in the Arctic are affected by frost heave due to the region's extremely low temperatures, a condition that is not present in Korea, making it vital to develop a finite element method (FEM) model. This research paper study a model of gas pipe lines in the Arctic and frost heave using FEM.

Stress Analysis of Arctic Thaw Settlement with Gas Pipeline using Finite Element Method (유한요소해석을 활용한 극한지 융해침하에 따른 천연가스배관의 응력해석)

  • Kim, Kyung Il;Yeom, Kyu Jung;Kim, Young-Pyo;Kim, Woo Sik;Oh, Kyu Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.78-84
    • /
    • 2014
  • It is important to secure the supply of gas in arctic region which is not developed recently due to depleting of fossil fuel. It is competing in order to secure the arctic region. The need for the occurring the pipeline design in arctic region is essential for development. In this study, we develop the model of thaw settlements for analysis the stress and displacement which applied with pipe in arctic region between $-40^{\circ}C$ to $20^{\circ}C$. The soil was applied with Mohr-coulomb theory and pipe was elasto-plastic method.

Nonlinear Analysis of Improved Degenerated Shell Finite Element (개선된 Degenerated 쉘 유한요소의 비선형 해석)

  • 최창근;유승운
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.113-123
    • /
    • 1990
  • The paper is concerned with the elasto-plastic and geometrically nonlinear analysis of shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem ; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior ; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. In the formulation for plastic deformation, the concept of a layered element model is used and the material is assumed von Mises yield criterion. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements and rotations. The resulting non-linear equilibrium equations are solved by the Netwon-Raphson method combined with load or displacement increment. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

Two Dimensional Elasto-plastic Stress Analysis by the B.E.M. (경계요소법에 의한 2차원 탄소성응력해석)

  • 조희찬;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.621-629
    • /
    • 1992
  • This study is concerned with an application of the Boundary Element Method to 2-dimensional elastoplastic stress analysis on the material nonlinearities. The boundary integral formulation adopted an initial stress equation in the inelastic term. In order to determine the initial stress increment, the increment of initial elastic strain energy due to elastic increment in stressstrain curve was used as the convergence criterion during iterative process. For the validity of this procedure, the results of B.E.M. with constant elements and NISA with linear elements where compared on the thin plate with 2 edge v-notches under static tension and the thick cylinder under internal pressure. And this paper compared the results of using unmedical integral with the results of using semi-analytical integral on the plastic domain integral.

Flexural Behavior of Composite HSB I-Girders in Positive Moment (HSB 강합성거더 정모멘트부 휨거동)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.377-388
    • /
    • 2010
  • The flexural behavior of composite HSB600 and HSB800 I-girders under a positive moment was investigated using the material non-linear moment-curvature analysis method. Three representative composite sections with different ductility properties were selected as the baseline sections in this study. Using these baseline sections, the moment-curvature program was verified by comparing the flexural strength and the moment-curvature curve obtained from the program with those obtained using the non-linear FE analysis of ABAQUS. In the FE analysis, the composite girders were modeled three-dimensionally with flanges, the web, and the concrete slab as thin shell elements, and initial imperfections and residual stresses were imposed on the FE model. In the moment-curvature and FE analyses, the 28-day compressive strength of the concrete slab was assumed to be 30-50 MPa, and the HSB600 and HSB800 steels were modeled as elasto-plastic strain-hardening materials, with the concrete as the CEB-FIP model. The effects of the ductility ratio of the composite girder, the type of steel, the compressive strength of the concrete deck, and the location of the plastic neutral axis on the flexural characteristics were analyzed.

Nonlinear Analysis of RC Shell Structures Including Creep and Shrinkage Effects (크리프와 건조수축을 고려한 RC쉘 구조물의 비선형 해석)

  • 정진환;한충목;조현영
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.181-188
    • /
    • 1993
  • In this study, a numerical method for the material nonlinear analysis of reinforced concrete shell structures including the time dependent effects due to creep and shrinkage is developed. Degenerate shell elements with the layered approach are used. The perfect or strain hardening plasticity model in compression and the linearly elastic model in tension until cracking for concrete are employed. The reinforcing bars are considered as a steel layer of equivalent thickness. Each :steel layer has an uniaxial behaviour resisting only the axial force in the bar direction. A bilinear idealization is adopted to model elasto-plastic stress-strain relationships. For the nonlinear anaysis, incremental load method combined with unbalanced load iterations for each load increment is used. To include time dependent effects of concrete, time domain is divided into several time steps which may have different length. Some numerical examples are presented to study the validity and applicability of the present method. The results are compared with experimental and numerical results obtained by other investigator.

Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling (조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도)

  • Shin, Dong Ku;Cho, Eun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.399-409
    • /
    • 2012
  • The flexural behavior of HSB plate girder with a non-slender web, due to inelastic lateral-torsional buckling, under uniform bending was investigated by the nonlinear finite element analysis. Both homogeneous sections fabricated from SM570-TMC, HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. The flanges and web of selected noncomposite I-girders were modeled as thin shell elements and the geometrical and material nonlinear finite element analysis was performed by the ABAQUS program. The steel was assumed as an elasto-plastic strain hardening material. Initial imperfections and residual stresses were taken into account and their effects on the inelastic lateral-torsional buckling behavior were analyzed. The flexural strengths of selected sections obtained by the finite element analysis were compared with the nominal flexural strengths from KHBDC LSD, AASHTO LRFD, and Eurocode and the applicability of these codes in predicting the inelastic lateral torsional buckling strength of HSB plate girders with a non-slender web was assessed.

Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model (연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석)

  • Kang Sang Soo;Lee Jong-Kil;Baek Hwanjo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In situ rock mass is generally heterogeneous and discontinuous, with varying degrees of strength along the planes of weakness. The planes of weakness such as joints, faults, cracks and bedding planes, control the strength and deformation characteristics of the rock mass. Subsequently, the stability of underground opening depends upon the spatial distribution of discontinuities and their mechanical properties in relation with geometrical shape of openins as well as the mechanical properties of intact rock materials. Understanding the behaviour of a discontinuous rock mass remains a key issue for improving excavation design in hiかy stressed environments. Although recent advances in rock mechanics have provided guidelines for the design of underground opening in isotropic rock mass, prediction and control of deformation in discontinuous rock masses are still unclear. In this study, parametric study was performed to investigate the plastic zone size, stress distribution and deformation behavior around underground opening in a discontinuous rock mass using a continuum joint model. The solutions were obtained by an elasto-plastic finite difference analysis, employing the Mohr-Coulomb failure criteria. Non-associated flow rule and perfectly plastic material behavior are also assumed.