• Title/Summary/Keyword: Elasto-plastic Analysis

Search Result 666, Processing Time 0.031 seconds

The Numerical Analysis on the Behaviour of Combined Sheet Pile in the Reclaimed Ground Mixed by Sandy Soil and Clayey Soil (사질토와 점성토가 혼재하는 해안 매립지반에서 조합형 Sheet Pile의 거동에 관한 해석적 연구)

  • Kim, Byung-Il;Kim, Young-Sun;Han, Sang-Jae;Park, Eon-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.9-21
    • /
    • 2020
  • In this study, the design method of the combined sheet pile was considered in the coastal landfill where sandy and clayey soils are mixed, and the behavior in excavation was analyzed. It was confirmed from the elasto-plastic analysis that the predicted behavior of the temporary facilities of earth retaining differs according to the type of the combined sheet pile method (Built up, Interlocking, Welding) and the analysis method (soldier pile method, continuous wall method). In the case of sheet pile member force, the results of the continuous wall analysis method predicted the most conservative results. When the stress ratio (calculation/allowance) of each member was analyzed based on the maximum member force of the combined sheet pile method, the maximum value was obtained for bending moment in the side pile and combined stress in the case of the strut. As a result of finite element analysis, the member force of the side pile was the largest in the short-term effective stress analysis condition, while the compressive force of the strut was large in the consolidation analysis. When comparing the results of the elasto-plastic analysis and the finite element analysis, the shear force of the side pile and the axial force of the strut were greatly evaluated in the elasto-plastic analysis, and the bending moment of the side pile was the largest in the short-term effective stress condition of the finite element analysis. In addition, the displacement of the side pile was predicted to be greater in the finite element analysis than in the elasto-plastic analysis.

Post-buckling and Elasto-plastic Analysis of Shell Structures using the Degenerated Shell Element (변형된 쉘요소를 이용한 판 및 쉘 구조의 후좌굴 및 탄.소성 유한요소해석)

  • 김문영;민병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.17-27
    • /
    • 1995
  • For the post-buckling and elasto-plastic analysis of shell structures, the total Lagrangian formulation is presented based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors in the iteration process and evaluating the total Green-Lagrange stain corresponding U total displacements. In the calculation of the stiffness matrix, the element formulation takes into account the effect of finite rotation increments by retaining second order rotation terms in the incremental displacement field. The selective or reduced integration scheme using the heterosis element is applied in order to overcome both shear locking phenomena and the zero energy mode. The load/displacement incremental scheme is adopted for geometric non-linear F .E. analysis. Based on such methodology, the computer program is developed and numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with references's results.

  • PDF

A Study on Residual Stress of SiC Whisker Reiforced AI Alloy/$ZrO_2$ Joints (SiC 휘스커강화 금속복합재료와 지르코니아 접합체의 잔류응력 해석에 관한 연구)

  • 주재황;박명균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.18-26
    • /
    • 1996
  • A two dimensional thermo elasto-plastic finite element stress analysis was performed to study residual stress distributions in AI composites reinforced by SiC whisker and $ZrO_2$ ceramic joints. The influences on the residual stress distributions due to the difference of the reinforcement volume fraction and interlayer material property were investigated. Specifically, stress distributions between AI interlayer material property were investigated. Specifically, stress distributions between AI interlayer and $ZrO_2$ ceramic and between the AI interlayer and AI composite were computationally analzed.

  • PDF

The effect of corner shape in the casting mould on thermal stresses distribution (金型의 모서리부 形狀이 熱應力分布에 미치는 影響)

  • 민수홍;구본권;김옥삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.567-574
    • /
    • 1991
  • In this study thermal stress generated in three ingot moulds(GC25) during the solidification process of aluminum were analyzed by the two-dimensional thermo-elasto-plastic theory. In temperature analysis, all of the three models are shown steep temperature rising each case in initial stage of cooling. In thermal stress analysis, all of three models took compressible stress on inside wall of the mould, and tensible along with on out side. Model 2 take place less compressible, tensible stress then model 1. But model 3. have similar as thermal stress as model 2. The analysis will made one possible to calculate an optimum mould shape whose thermal stress gradient becomes minimum.

Design and Analysis on The Connections of RC Precast Large Panel (철근콘크리트 프리캐스트 대형판 접합부의 설계 및 해석)

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.85-92
    • /
    • 2006
  • Precast large panel structures have various connection system such as the horizontal slab-to-wall connection, the vertical wall to wall connection, horizontal slab-to-slab connection, etc. Horizontal connection is connected by vertical tie bars, and vertical joint is connected loop bars and shear keys. The basic function is equalized deformations on later forces and the entire wall panel assembly acts as monolithic actions. Under lateral load some slip occurs in almost vertical connections. The shape and detail of precast connections are very important to the monolithic behavior of overall structures. The paper is a study on the design method and new elasto-plastic analysis of the connections by rigid-bodies spring model.

  • PDF

A Parametric Study on the Interaction between Ground Movements and Adjacent Structures in Urban Tunnelling (도심지 터널굴착에 따른 인접 구조물과 지반거동의 상호영향에 대한 매개변수 연구)

  • 강봉재;황의석;이봉렬;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.485-492
    • /
    • 2000
  • Current design practice for the prediction of tunnelling-induced ground movements depends on empirical methods, which are based on many assumptions and simplification of the modeling. Some discrepancies between the predictions and the measurements of ground movements regarding adjacent structures are inevitable. In order to investigate tunnel-induced ground movements affect on the settlement of existing structures as well as existing structures affect tunnel-induced ground movement, 2-D elasto-plastic finite element analysis are performed. The following influencing factors such as load of the structures, the width of structures, its bending and axial stiffness, its position relative to the tunnel are considered in the numerical analysis.

  • PDF

Study on the space frame structures incorporated with magnetorheological dampers

  • Xu, Fei-Hong;Xu, Zhao-Dong;Zhang, Xiang-Cheng
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.279-288
    • /
    • 2017
  • Magnetorheological damper has received significant attention in recent years due to the reason that it can offer adaptability of active control devices without requiring the associated large power sources. In this paper, performance tests on a MR damper are carried out under different currents, excitation amplitudes and frequencies, the damping characteristics and energy dissipation capacity of the MR damper are analyzed. Elasto-plastic dynamic analysis on a space frame structure incorporated with MR dampers is conducted, and numerical analysis results show that MR dampers can significantly mitigate the structural vibration responses. Finally, the genetic algorithm with the improved binary crossover and mutation technique is adopted to optimize the arrangement of MR dampers. Numerical results show that dynamic responses of the optimal controlled structure are mitigated more effectively.

A Study on the Prediction and Control of Angular Distortion in Thick Weldments (후판 구조의 각변형 예측 및 제어에 관한 연구)

  • 허주호;김상일
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.518-524
    • /
    • 2003
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

A Study on the Prediction and Control of Angular Distortion in Thick Weldments (후판 구조의 각변형 예측 및 제어에 관한 연구)

  • Kim, Sang-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.100-105
    • /
    • 2008
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding residual stress relaxation and fairing With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

Numerical analysis of post welding heat treatment base on the thermal creep elastic-plastic theory (점열탄소성 이론에 의한 용접후열처리에 대한 수치해석)

  • 방한서;차용훈;오율권;노찬승;김종명
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.113-123
    • /
    • 1997
  • The welding residual stresses produced by welding frequently cause a crack and promote stress corrosion etc. in heat affected zone contained with external load and weakness of material. For the purpose pof relaxation of welding residual stress, post welding heat teratment(PWHT) is widely used. In this paper, the computer program which is based on Thermal-Elasto-plastic-creep theory for plane deformation on developed by finite element method (F.E.M) and verified its propriety by experimental measurement and also by using the developed computer program. The mechanical behavior of butt welding joint is clairfied during PWHT.

  • PDF