• Title/Summary/Keyword: Elasticity ratio

Search Result 546, Processing Time 0.02 seconds

On vibration and flutter of shear and normal deformable functionally graded reinforced composite plates

  • Abdollahi, Mahdieh;Saidi, Ali Reza;Bahaadini, Reza
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.437-452
    • /
    • 2022
  • For the first time, the higher-order shear and normal deformable plate theory (HOSNDPT) is used for the vibration and flutter analyses of the multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) plates under supersonic airflow. For modeling the supersonic airflow, the linear piston theory is adopted. In HOSNDPT, Legendre polynomials are used to approximate the components of the displacement field in the thickness direction. So, all stress and strain components are encountered. Either uniform or three kinds of non-uniform distribution of graphene platelets (GPLs) into polymer matrix are considered. The Young modulus of the FG-GPLRC plate is estimated by the modified Halpin-Tsai model, while the Poisson ratio and mass density are determined by the rule of mixtures. The Hamilton's principle is used to obtain the governing equations of motion and the associated boundary conditions of the plate. For solving the plate's equations of motion, the Galerkin approach is applied. A comparison for the natural frequencies obtained based on the present investigation and those of three-dimensional elasticity theory shows a very good agreement. The flutter boundaries for FG-GPLRC plates based on HOSNDPT are described and the effects of GPL distribution patterns, the geometrical parameters and the weight fraction of GPLs on the flutter frequencies and flutter aerodynamic pressure of the plate are studied in detail. The obtained results show that by increasing 0.5% of GPLs into polymer matrix, the flutter aerodynamic pressure increases approximately 117%, 145%, 166% and 196% for FG-O, FG-A, UD and FG-X distribution patterns, respectively.

Evaluation of Tensile and Compressive Performance of CFRP Rebars according to Heating Temperatures (가열온도에 따른 CFRP Rebar의 인장 및 압축 성능 평가)

  • Jae-Hee Lee;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2024
  • The demand for FRPs that are corrosion-free and have an excellent tensile strength-to-weight ratio. However, there is a lack of research on the mechanical properties of FRP in the form of rebars, especially the changes in performance due to heating. Therefore, in this paper, 60 tensile and compression specimens of CFRP rebars with a diameter of 12 mm were fabricated and subjected to direct tensile and direct compression tests, and their performance was evaluated according to the heating temperature. It was found that as the heating temperature increases above 300 ℃, the performance decrease becomes larger due to the burning of epoxy. The compressive strength was found to be much lower than the tensile strength, but the modulus of elasticity was found to be the same in tension and compression.

Combination of Quantitative Parameters of Shear Wave Elastography and Superb Microvascular Imaging to Evaluate Breast Masses

  • Eun Ji Lee;Yun-Woo Chang
    • Korean Journal of Radiology
    • /
    • v.21 no.9
    • /
    • pp.1045-1054
    • /
    • 2020
  • Objective: This study aimed to evaluate the diagnostic value of combining the quantitative parameters of shear wave elastography (SWE) and superb microvascular imaging (SMI) to breast ultrasound (US) to differentiate between benign and malignant breast masses. Materials and Methods: A total of 200 pathologically confirmed breast lesions in 192 patients were retrospectively reviewed using breast US with B-mode imaging, SWE, and SMI. Breast masses were assessed based on the breast imaging reporting and data system (BI-RADS) and quantitative parameters using the maximum elasticity (Emax) and ratio (Eratio) in SWE and the vascular index in SMI (SMIVI). The area under the receiver operating characteristic curve (AUC) value, sensitivity, specificity, accuracy, negative predictive value, and positive predictive value of B-mode alone versus the combination of B-mode US with SWE or SMI of both parameters in differentiating between benign and malignant breast masses was compared, respectively. Hypothetical performances of selective downgrading of BI-RADS category 4a (set 1) and both upgrading of category 3 and downgrading of category 4a (set 2) were calculated. Results: Emax with a cutoff value of 86.45 kPa had the highest AUC value compared to Eratio of 3.57 or SMIVI of 3.35%. In set 1, the combination of B-mode with Emax or SMIVI had a significantly higher AUC value (0.829 and 0.778, respectively) than B-mode alone (0.719) (p < 0.001 and p = 0.047, respectively). B-mode US with the addition of Emax, Eratio, and SMIVI had the best diagnostic performance of AUC value (0.849). The accuracy and specificity increased significantly from 68.0% to 84.0% (p < 0.001) and from 46.1% to 79.1% (p < 0.001), respectively, and the sensitivity decreased from 97.6% to 90.6% without statistical loss (p = 0.199). Conclusion: Combining all quantitative values of SWE and SMI with B-mode US improved the diagnostic performance in differentiating between benign and malignant breast lesions.

Physical and Mechanical Properties of Light Red Meranti Treated with Boron Preservatives

  • Man Djun LEE;Ridge Wei Cheong TANG;Zeno MICHAEL;Miqdad KHAIRULMAINI;Azmi ROSLAN;Ahmad Faidzal KHODORI;Hazim SHARUDIN;Pui San LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.157-174
    • /
    • 2024
  • This study investigates the influence of varying concentrations of boric acid (BA) preservative on the physical and mechanical properties of light red meranti (LRM) found in Sarawak. LRM or Shorea leprosula samples were treated with various concentrations of BA via the dip diffusion method using American Society for Testing and Materials (ASTM) standards. The physical property, particularly the retention rate and mechanical properties, bending strength, modulus of elasticity (MOE), tensile and compression strength parallel to grain of impregnated and control samples were tested to determine the effects of BA preservative. The retention rate was found to increase with increasing BA concentration and higher surface area to volume ratio. The mechanical properties in terms of the MOE and tensile strength parallel to grain were found to be greater than those of the control samples, whereas the bending strength and tensile strength parallel to grain were lower. Amongst the results, only the retention rate and MOE showed significant interaction effects at 5% level of significance between all factors tested (samples size and BA concentration for retention rate and BA concentration for MOE).

A Study on Rheological and General Baking Properties of Breads and Their Rusks Prepared of Various Cereal Flours (I) (쌀가루와 기타곡분을 이용한 식빵 및 러스크의 제조 방법과 물성에 관한 연구(I) - 혼합곡분반죽의 물성에 대하여-)

  • 권혁련;안명수
    • Korean journal of food and cookery science
    • /
    • v.11 no.5
    • /
    • pp.479-486
    • /
    • 1995
  • The reological properties of doughs blended with cereal flours were investigated in the study. The doughs were prepared of wheat flours mixed with 10%, 20%, 30% and 40% ratio of rice flour, waxy-rice flour, brown-rice flour and soybean flour. Amylogram, farinogram, extensogram and SEM were used to measured thier special properties with graphs and photos. The results were obtained as followes; 1. Wheat dough formation after fermantation, showed "stringing" structure of small starch granules on the SEM photo. But the large starch granules contributed little to the structure formation in rice flours dough, and played relatively a little role in the structure formation of blended doughs of waxy-rice, brown-rice and soy- bean flours. 2. The absorption of flour composited rice and brown-rice, was lower than that of the control by Farinograph. It was decreased the farinograph absorption with the increase of replacement ratio of cereal flours. Dough development time of cereal blended flours decreased, but that time of waxy-rice and brown-rice were very similiar. Farinograph stability of rice, waxy-rice, brown-rice and soybean blended flours, had shorter than that of wheat-flour. 3. The results showed that cereal blended flours decreased the resistance to extention (elasticity) without affecting the extensibility in fermented dough by Extensograph. 4. The gelatinization temperature of wheat, rice, waxy-rice, and brown-rice were 55.0$^{\circ}C$, 64.0$^{\circ}C$, 58.0$^{\circ}C$ and 61.0$^{\circ}C$. But that of all cereal blended flours showed 58.0$^{\circ}C$ except 20% or 30% soybean blended flours. According to the amylogram, each maximum viscosity of rice flour and wheat flour was 1760 B.U.,760 B.U.. Soybean composite flours had significantly lowe. amylograph peak viscosity (300 B.U.) than that of the other composite flours (450 B.U.-1100 B.U.).

  • PDF

Improvement of estimating method for construction management service fee by case study (사례분석을 통한 건설사업관리 대가산정 방법 개선)

  • Lee, Ung-Kyun;Yoo, Wi-Sung;Kim, Dong-In;Kim, Tae-Hoon;Cha, Min-Soo;Cho, Hun-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • The objective of this paper is to suggest the improvement of estimating system for construction management (CM) service fee through the analysis of the previous literatures and criteria and case study. In order to do this, this paper considered the relevance of existing criteria to estimate the CM service fee, the condition of input ratio of engineering resources in the real cases, and current utilization strategy of nonresident technical engineers. Based on the analysis, the following problems were identified; a) the different estimating system for CM fee and construction supervision fee, b) impractical estimating system for the CM fee, and c) inappropriate allocation of human resources for CM. Consequently, this paper suggested the following 4 items for the improvement of the existing system; (1) modification of the current structure of CM fee calculation, (2) rationalization of current level of the CM fee which is required to be raised approximately 5.4 percent compared to design or supervision fee, (3) securement of elasticity of the input ratio of engineering resources from the inception phase, and (4) development of the utilization strategy of nonresident engineers based on the technical requirement of the jobsite. Thus, it is anticipated that this research would affect the compensation package of CM in order to make the estimation process of CM service fee more efficient and to revitalize CM as business.

Multi-scale Analysis of Thin film Considering Surface Effects (표면효과를 고려한 박막구조의 멀티스케일 해석)

  • Cho, Maeng-Hyo;Choi, Jin-Bok;Jung, Kwang-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.287-292
    • /
    • 2007
  • In general, the response of bulk material is independent of its size when it comes to considering classical elasticity theory. Because the surface to bulk ratio of the large solids is very small, the influence of surface can be negligible. But the surface effect plays important role as the surface to bulk ratio becomes larger, that is, the contribution of the surface effect must be considered in nano-size elements such as thin film or beam structure. Molecular dynamics computation has been a conventional way to analyze these ultra-thin structures but this method is limited to simulate on the order of $10^6{\sim}10^9$ atoms for a few nanoseconds, and besides, very time consuming. Analysis of structures in submicro to micro range(thin-film, wire etc.) is difficult with classical molecular dynamics due to the restriction of computing resources and time. Therefore, in this paper, the continuum-based method is considered to simulate the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film.

Development of Surface Pavement Materials for Environment-Friendly Farm Road (환경친화형 경작로를 위한 표층포장재료의 개발)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.2
    • /
    • pp.105-114
    • /
    • 2004
  • This study was performed to examine the physical and mechanical properties of eco-concrete using soil, natural coarse aggregate, soil compound and polypropylen fiber. The mass loss ratio was decreased with increasing the content of coarse aggregate and soil compound. The compressive strength, flexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity were increased with increasing the content of coarse aggregate, soil compound and polypropylene fiber. The compressive and flexural strengths were showed in 8.07 MPa and 2.641 MPa at the curing age 28 days, respectively. The coefficient of permeability was decreased with increasing the content of coarse aggregate and soil compound, but it was increased with increasing the content of polypropylene fiber. The lowest coefficent of permeability was showed in $5.066{\times}10^{-9}cm/s$.

  • PDF

Prediction of Structural Behavior of FRP Rebar Reinforced Concrete Slab based on the Definition of Limit State (한계상태 정의에 따른 FRP Rebar 보강 콘크리트 슬래브의 구조거동 예측)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.371-381
    • /
    • 2020
  • The failure mode of concrete reinforced with FRP is defined as the concrete crushing and the fiber rupture and the definition of limit state is a slightly different according to the design methods. It is relatively difficult to predict of FRP reinforced concrete because the mechanical properties of fibers are quite depending on its of fibers. The design code by ACI440 committee, which has been developed mainly on GFRP having low modulus of elasticity, is widely used, but the applicability on other FRPs of this code has not been sufficiently verified. In addition, the ultimate and serviceability limit state based on the ACI440 are comparatively difficult to predict the behavior of member with the 0.8~1.2 𝜌b because crushing and rupturing failure can be occurred simultaneously is in this region of reinforcement ratio, and predicted deflection is too sensitive according to the loading condition. Therefore, in this study, reliability and convenience of the prediction of structural performance by design methods such as ACI440 and MC90 concept, respectively, were examined through the experimental results and literature review of the beam and slab with the reinforcement ratio of 0.8 ~ 1.4. As a result of the analysis, it can be applied to the FRP reinforced structure in the case of the simple moment-curvature formula (LIM-MC) of Model Code, and the limit state design method based on the EC2 is more reliable than the ultimate strength design method.

Properties of the Super Flowing Concrete Using Crushed Stone Fines (쇄석분을 사용한 초유동콘크리트의 특성에 관한 연구)

  • 이승한;정용욱
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.476-483
    • /
    • 2001
  • 초유동콘크리트는 유동성 증진 및 충전성 향상을 위해 단위분체량을 크게하기 때문에 콘크리트의 고강도화와 수화발열량을 증가시키는 문제점을 가지고 있다. 이에 본 연구는 초유동콘크리트의 강도조절과 수화열 저감을 위해 쇄석분을 이용하여 초유동콘크리트의 강도, 유동성, 내구성능 및 건조수축 특성을 검토하였다. 실험결과 쇄석분은 치환율 10% 증가시마다 무치환시의 압축강도를 약 10~15%씩 감소시키며, 변형계수와 물구속비를 감소시켜 초유동콘크리트의 유동성 향상에 효과적이다. 또한 초유동콘크리트에서 쇄석분 10%치환시 마다 단위시멘트량 감소에 따른 최고 단열온도상승량을 약 4$^{\circ}C$씩 감소시켰다. 반면 건조수축량은 10%치환시 마다 약 5%증가시켰다. 한편 초유동콘크리트의 내구성능은 단위분체량과 유동성향상에 따른 조직의 치밀화로 쇄석분 치환에 관계없이 상대동탄성계수 90%이상으로 우수하게 나타났다. 이와 같이 분체로서 쇄석분 사용은 치환량에 따른 초유동콘크리트의 강도조절이 가능하며 수화발열량을 저감시킬 수 있다. ^ x Super flowing concrete causes high strength and the increase of heat of hydration because of the big unit powder content of concrete to increase flowability and to improve compact of concrete. Therefore, this study investigates the characteristic properties of strength, flowability, durability and drying shrinkage to control strength and to reduce heat of hydration of super flowing concrete using crushed stone fines. According to the experimental results, when crushed stone fines are increased every 10%, 10~15% of compressive strength is decreased and flowability of super flowing concrete is effectively improved due to the decrease of modulus of deformation and confined water ratio. When crushed stone fines are replaced every 10%, 4$^{\circ}C$ of the highest adiabatic temperature rise is decreased by reducing the unit cement. However, 5% of drying shrinkage is increased in the same condition. In the meantime, durability of super flowing concrete is excellent, having over 90 % of good relative dynamic modulus of elasticity due to fineness of formation caused by the increase of the unit powder content and the improvement of flowability, without regard to the replacement of crushed stone fines. Therefore, it can be said that the usage of crushed stone fines can control the strength of super flowing concrete by replacement and reduce heat of hydration.