• Title/Summary/Keyword: Elastic panels

Search Result 101, Processing Time 0.023 seconds

p-Version Finite Element Analysis of Cracked Panels Based on Linear Elastic Fracture Mechanics (선형탄성파괴역학 이론에 의한 균열판의 p-Version 유한요소해석)

  • 윤영필;우광성;박병기;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.19-26
    • /
    • 1993
  • The p-version crack model based on integrals of Legendre polynomial and virtual crack extension method is proposed with its potential for application to stress intensity factor computations in linear elastic fracture mechanics. The main advantage of this model is that the data preparation effort is minimal because only a small number of elements are used and the high accuracy and the rapid rate of convergence can be achieved in the vicinity of crack tip. There are two important findings from this study. Firstly, the limit value, the strain energy of the exact solution can be estimated with successive three p-version approximations by ascertaining the approximations is entered the asymptotic range. Secondly, the rate of convergence of p-version model is almost twice that of h-version model on the basis of uniform or quasiuniform mesh refinement for the cracked panel problem subjected tension.

  • PDF

Dynamic analysis of a flexible multibody system

  • Chae Jang-Soo;Park Taw-Won;Kim J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.21-25
    • /
    • 2005
  • In the dynamic analysis of a mechanism, if one or more of the components are flexible, then the simulation will not be accurate because of the violation of the rigid body assumption. Mode shapes are used to represent the dynamic behavior of an elastic structure. A modal synthesis method which uses a combination of normal modes, constraint modes, and attachment modes, was used to represent effectively the elastic deformation of a flexible multibody. Since the combination of these modes should be different for each type of connecting part, the modal synthesis method was studied for the various types of interconnecting joints. In addition, the analysis procedure for the flexible body was explained. A satellite system with flexible solar panels was chosen as an example to show the effectiveness of the proposed method.

Analysis of low-velocity impact on composite sandwich panels using an assumed strain solid element (가정변형률 솔리드 요소를 이용한 복합재 샌드위치 평판의 저속충격 해석)

  • Park, Jung;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo;Lee, Jae-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.44-50
    • /
    • 2002
  • Low-velocity impact on composite sandwich panel has been investigated. Contact force is computed from a proposed modified Hertzian contact law. The Hertzian contact law is constructed by adjusting numerical value of the exponent and reducing the through-the- thickness elastic constant of honeycomb core. The equivalent transverse elastic constant is calculated from the rule of mixture. Nonlinear equation to calculate the contact force is solved by the Newton-Raphson method and time integration is done by the Newmark-beta method. A finite element program for the low-velocity impact analysis is coded by implementing these techniques and an 18-node assumed strain solid element. Behaviors of composite sandwich panels subjected to low-velocity impact are analyzed for various cases with different geometry and lay-ups. It has been found that the present code with the proposed contact law can predict measured contact forces and contact times for most cases within reasonable error bounds.

Cyclic testing of chevron braced steel frames with IPE shear panels

  • Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1167-1184
    • /
    • 2015
  • Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.

J-integral and fatigue life computations in the incremental plasticity analysis of large scale yielding by p-version of F.E.M.

  • Woo, Kwang S.;Hong, Chong H.;Basu, Prodyot K.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.51-68
    • /
    • 2004
  • Since the linear elastic fracture analysis has been proved to be insufficient in predicting the failure of strain hardening materials, a number of fracture concepts have been studied which remain applicable in the presence of plasticity near a crack tip. This work thereby presents a new finite element model to predict the elastic-plastic crack-tip field and fatigue life of center-cracked panels(CCP) with ductile fracture under large-scale yielding conditions. Also, this study has been carried out to investigate the path-dependence of J-integral within the plastic zone for elastic-perfectly plastic, bilinear elastic-plastic, and nonlinear elastic-plastic materials. Based on the incremental theory of plasticity, the p-version finite element is employed to account for the accurate values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ${\Delta}J$ for ${\Delta}K$. The experimental fatigue test is conducted with five CCP specimens to validate the accuracy of the proposed model. It is noted that the relationship between the crack length a and ${\Delta}K$ in LEFM analysis shows a strong linearity, on the other hand, the nonlinear relationship between a and ${\Delta}J$ is detected in EPFM analysis. Therefore, this trend will be depended especially in the case of large scale yielding. The numerical results by the proposed model are compared with the theoretical solutions in literatures, experimental results, and the numerical solutions by the conventional h-version of the finite element method.

Predicting restraining effects in CFS channels: A machine learning approach

  • Seyed Mohammad Mojtabaei;Rasoul Khandan;Iman Hajirasouliha
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.441-456
    • /
    • 2024
  • This paper aims to develop Machine Learning (ML) algorithms to predict the buckling resistance of cold-formed steel (CFS) channels with restrained flanges, widely used in typical CFS sheathed wall panels, and provide practical design tools for engineers. The effects of cross-sectional restraints were first evaluated on the elastic buckling behaviour of CFS channels subjected to pure axial compressive load or bending moment. Feedforward multi-layer Artificial Neural Networks (ANNs) were then trained on different datasets comprising CFS channels with various dimensions and properties, plate thicknesses, and restraining conditions on one or two flanges, while the elastic distortional buckling resistance of the elements were determined according to the Finite Strip Method (FSM). To develop less biased networks and ensure that every observation from the original dataset has the chance of appearing in the training and test set, a K-fold cross-validation technique was implemented. In addition, the hyperparameters of the ANNs were tuned using a grid search technique to provide ANNs with optimum performances. The results demonstrated that the trained ANNs were able to predict the elastic distortional buckling resistance of CFS flange-restrained elements with an average accuracy of 99% in terms of coefficient of determination. The developed models were then used to propose a simple ANN-based design formula for the prediction of the elastic distortional buckling stress of CFS flange-restrained elements. Finally, the proposed formula was further evaluated on a separate set of unseen data to ensure its accuracy for practical applications.

Mechanical Performance of Near-Optimized Sandwich Panels with Quasi-Kagome Truss Cores under Bending Load (준 카고메 트러스 심재를 갖는 최적화된 샌드위치 판재의 굽힘하중 하에서의 기계적 성능)

  • Lim, Chai-Hong;Joo, Jai-Hwang;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1025-1030
    • /
    • 2007
  • Three kinds of metallic sandwich panels with quasi-Kagome truss cores have been analyzed on their mechanical behaviors subjected to bending load. According to the results of previous work on the optimal design, they were designed to have similarly high strength per weight with the identical overall sizes, i.e., the total length, the width, the core height. Differences were in the face sheet thickness and/or the thickness of the metal sheet from which the core was fabricated through expanding and bending processes. Under the bending load, they performed well as designed, as far as the maximum load is concerned. However, after the maximum load, the load-displacement curves were different each other depending on the slenderness ratio of the truss elements composing the quasi-Kagome truss cores and the face sheet thickness. Namely, the slenderness ratio and the face sheet thickness governed stability of the elastic and plastic buckling. Therefore, if energy absorption characteristics or structural stability as well as the maximum load capacity are to be achieved, the sandwich panel with thick truss members and thick face sheet should be selected.

Application of p-Version Crack Model Based on J-integral Method in LEFM Analysis (선형탄성 파괴역학해석에서 J-적분법에 의한 p-Version 균열모델의 적용)

  • 이채규;우광성;김영인
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.137-148
    • /
    • 1995
  • A new path independent contour integral formulus for the distinct calculation of mode I stress intensity factors in two dimensional linear elastic fracture mechanics problems is presented. This method is based on p-convergence concepts and can be easily appended to existing finite element computer codes. In this study, the stress state at crack tip has been investigated and the path independence of J-integral values has been tested with respect to different contours expressed by normalized distance apart from the crack tip. Numerical results by p-convergence for the problems such as centrally cracked panels, single and double edged cracks in rectangular panels have been compared with those by the conventional h-convergence. The comparison demonstrates the accuracy and stability of the proposed method.

  • PDF

Finite Element Modelling of Axially Compressed GFRP Cylindrical Panels (축방향으로 압축을 받는 GFRP 원통형 판넬의 유한요소 모델링)

  • Kim, Ki Du
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.15-25
    • /
    • 1993
  • In order to promote the efficient use of composite materials, effort is currently being directed at the development of design criteria for composite structures. Insofar as design against buckling is concerned, it is well known that, for metal shells, a key step is the definition of 'knockdown' factors on the elastic critical buckling stress accounting mainly for the influence of initial geometric imperfections. At present, the imperfection sensitivity of composite shells has not been explored in detail. Due to the large number of parameters influencing buckling response (considerably larger than for isotropic shells), a very large number of tests would be needed to quantify imperfection sensitivity experimentally. An alternative approach is to use validated numerical models for this task. Thus, the objective of this paper is to outline the underlying theory used in developing a composite shell element and to present results from a validation exercise and subsequently from a parametric study on axially loaded glass fibre-reinforced plastic (GFRP) curved panels using finite element modelling. Both eigenvalue and incremental analyses are performed, the latter including the effect of initial geometric imperfection shape and amplitude, and the results are used to estimate 'knockdown' factors for such panels.

  • PDF

Warping and Buckling Prediction Model of Wooden Hollow Core Flush Door due to Moisture Content Change (I) : Comparison of Prediction Model with Experimental Results (목제(木製) 프러쉬 문의 함수율 변동에 따른 틀어짐과 좌굴 예측모델 (I) : 예측모델과 실측치 비교)

  • Kang, Wook;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.99-116
    • /
    • 1999
  • Wooden hollow core flush door is one of the main products of furniture manufacturing and woodworking industries. Warping and buckling of the door is serious problems in service. It has been reported that warping is caused by differences of physical and mechanical properties of face and back of skin panel for the door. This study focused on the prediction of warping and buckling phenomena of the flush door using numerical models. Predictions from the models were also compared with the experimental results obtained from the doors with plywood and hardboard skin panels under various environmental conditions. Three elastic constitutive models, so called elastic beam model, plate model and plate-buckling model, were employed to predict warping and buckling of the doors. It was observed that warping was more pronounced in low humidity condition than in high humidity condition. The plate model considering Poisson's effect was reliable to predict warping more closely than elastic beam model in low humidity condition. The plate-buckling model, however, was the best in the fitting of predictions with the experimental results under high humidity condition because buckling was developed in face and back of skin panel at that condition.

  • PDF