ELTE L v N

134 HT48% - 10035 9H )
lop 15~25 ] EEEXN

SYUECE AHKE W GFRP JUEH Fhdo|
Rées DU

Finite Element Modelling of Axially Compressed
GFRP Cylindrical Panels

H7| 5
Kim, Ki Du

..................................................................................................................

Abstract

In order to promote the efficient use of composite materials, effort is currently being directed
at the development of design criteria for composite structures. Insofar as design against buckling
is concerned, it is well known that, for metal shells, a key step is the definition of ‘knockdown’
factors on the elastic critical buckling stress accounting mainly for the influence of initial geometric
imperfections. At present, the imperfection sensitivity of composite shells has not been explored
in detail. Due to the large number of parameters influencing buckling response (considerably larger
than for isotropic shells), a very large number of tests would be needed to quantify imperfection
sensitivity experimentally. An alternative approach is to use validated numerical models for this
task. Thus, the objective of this paper is to outline the underlying theory used in developing a
composite shell element and to present results from a validation exercise and subsequently from
a parametric study on axially loaded glass fibre-reinforced plastic (GFRP) curved panels using finite
element modelling. Both eigenvalue and incremental analyses are performed, the latter including
the effect of nitial geometric imperfection shape and amplitude, and the results are used to estimate
‘knockdown’ factors for such panels.
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1. Introduction

Composite materials are increasingly being used
in a large variety of structures. Where high stre-
ngth and stiffness to weight ratios are important,
composite shell structures can be an attractive al-
ternative to more conventional forms of consturc-
tion. Up to now, most of the work in this area,
is concerned with ‘advanced’ carbon-fibre reinfo-
rced plastics (CFRP) used in the aerospace indus-
try although systematic design data are still lac-
king for many practical cases and, in particular,
for less costly laminates, such as glass-fibre rein-
forced plastics (GFRP), which are more likely to
make an impact in general civil and offshore stru-
ctural applications.

Most shell structures are thin, hence buckling
response is a major design consideration. A consi-
derable amount of design guidance is available
for isotropic shell strucures but this is not the
case for anisotropic shells. This is particularly true
in the case of buckling strength prediction, where
many problems are left to the designer and, the-
refore, high safety factors, that reduce the overall
structural efficiency, are frequently used. In gene-
ral, when results from experimental buckling stu-
dies of composite shells are compared with solu-
tions from linear buckling theory, it is noted that
the experimental results are lower than the corre-
sponding theoretical predictions. At present, re-
search is concerned with the influence of nonli-
near pre-buckling and boundary conditions, as
well as with post-buckling and boundary condi-
tions, as well as with post-buckling behaviour and
imperfection sensitivity, i.e. investigating the same
factors that were found to be important in the
behaviour of isotropic shells. At the same time,
work is being carried out into effects that are of
particular relevance to composite laminated struc-
tures, such as transverse shear deformation and
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failure related to material deterioration.

Shells are, in general, known to exhibit unstable
post-buckling behaviour. However, cylindrical pa-
nels under compression may exhibit either a
shell-type unstable behaviour or a stable plate-
type behaviour depending on geometry and boun-
dary conditions. As explained in Koiter’s pionee-
ring work,"” the nature of the post-buckling beha-
viour may be determined by the narrowness or
curvature parameter
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In the range O<@x<1, the critical buckling st-
ress increases from the value corresponding to
a flat panel to that of a complete cylinder. A cha-
nge from stable to unstable post-buckling beha-
viour must, therfore, occur within this range. For
pinned supports along the longitudinal edges, the
transition value is ©g~0.64. If @21, the critical
buckling stress of the panel is equal to that of
a complete cylinder. The obove remarks apply to
perfect isotropic panels but, in reality, panels will
contain geometric imperfections, which reduce the
buckling strength.

Early experimental studies®? did not address
in detail imperfection measurement or their effect
on buckling strength. On the other hand, theoreti-
cal work®® clearly demonstrated the effect of ani-
sotropic properties on both critical buckling and
limit loads of laminated curved panels. In particu-
lar, the effect of membrane-bending coupling in
asymmetric laminates was shown to be similar
to that of a geometric imperfection, insofar as it
introduced bending from the beginning of loading.
A comprehensive study on wide axially compres-
sed CFRP panels is presented in.® The imperfec-
tion sensitivity was studied using numerical mo-
dels and from several strategies adopted, the best
comparison with experimental results was obtai-
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ned by using imperfection shapes in he form of
the critical eigenmode. Experimental knockdown
factors (test load/linear buckling load) were about
80% or more, indicating reduced imperfection se-
nsitivity compared to isotropic panels. More rece-
ntly, analytical models for stiffened curved panels
have been presented, thus allowing realistic boun-
dary conditions to be applied,” and some design
aspects for symmetric CFRP laminates have been
considered.?.

Finite element models, used in conjunction with
a limited number of physical experiments, offer
the best possible method for quantifying imperfec-
tion sensitivity and producing design data for co-
mposite shell panels. In turn, this entails the de-
velopment of multi-layered composite shell eleme-
nts accounting for geometric non-linearities and
failure behaviour of composite materials. In many
cases, this process involves the extension of isot-
ropic elements, where the integration is carried
out for each layer. This leads to excessive compu-
tational time for the nonlinear analysis of compo-
site structures. Thus, it is essential to develop
an efficient shell element for the nonlinear analy-
sis of laminated composite structures. However,
it is beyond the scope of this paper to present
a review of finite element models for laminated
plates and shells, for which the reader is referred
to for example.®?

In [11], a nonlinear composite shell element
was developed and validated with reference to
several experimental, analytical and numerical re-
sults. Using this element, an extensive parametric
study on GFRP cylindrical panels under axial co-
mpression has been carried out for civil/marine
structural applications and is reported herein. The
results are presented in terms of “knock-down”
factors which may be used in developing design
recommendations.

2. Nonlinear Finite Element Analysis for
Composite Shells

2.1 Brief description of Nonlinear Composite

Shell Element
The finite element analysis was undertaken
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using a general purpose nonlinear FE package de-
veloped at Imperial College."? The program is pa-
rticularly suited to structural stability problems
(due to a number of strategies available for non-
linear solutions) and has been used extensively
in the modelling of thin-walled structures. The
finie element used in the current study® is an
eight-noded isoparametric shell element with six
degrees of freedom per node. The principle of
minimum potential energy is employed for deri-
ving the governing equations describing the beha-
viour of the composite shell element. The geomet-
rical nonlinearity considered in the present work,
which asumes small strain and large displacement
analysis, is based on the updated Lagrangian me-
thod. In order to remove the rigid body rotations,
the co-rotational method developed by Bates™ is
used. In this method, the displacement field is
referred to a set of local co-rotational coordinates.
The polar decomposition theory is used to derive
the co-rotational formulation, in which the motion
is decomposed into either a rigid translation follo-
wed by rigid rotation, or rigid rotation followed
by rigid translation. In other words, the deforma-
tion can be isolated by removing the rigid body
rotation from the total nodal displacements.

The laminate is treated as an equivalent single
layer and it is assumed that this layer is elastic
and that perfect bonding exists hetween layers.
Based on laminate theory, the composite shell
element is analytically integrated through the thi-
ckness.

Transverse shear deformation effects are inclu-
ded using a first-order (Mindlin-Reissner) theory,
in order to allow modelling of relatively thick pla-
tes and shells. However, it is generally accepted
that the effect of transverse deformations is more
significant in laminates compared to isotropic st-
ructures due to high moduli ratios (typically E/G=
2.6 for isotropic material but E /Gyrx6 for GFRP
laminae and Ei/Gr=80 for GFRP laminae). Zieg-
ler' showed -that the presence of transverse
shear decreases the buckling load of an isotropic
beam. Noor"” compared the buckling solution of
a composite plate based on classical plate theory
with the exact solution considering transverse



shear deformation. He concluded that the error
introduced by classical plate theory is strongly de-
pendent on the thickness ratio and that classical
plate theory is not adequate for uniaxial buckling
with thickness/length>0.05. Khdeir®® presented
similar results on the shear deformation effects
of anti-symmetric angleply laminates using a
Levy-type classical solution. By comparing the bu-
ckling solutions corresponding to classical theory
and first-order shear deformation theory, he conc-
luded that the resuits obtained by classical theory
can produce significant errors in buckling prob-
lems. In this respect, for buckling analysis of lami-
nated structures, the transverse shear effects
must be included in both the linearized and the
geometric stiffness matrix.

On the other hand, in order to avoid shear loc-
king in very thin plates and shells, reduced integ-
ration and so-called “special energy balance” te-
chniques are used to control the shear strain ene-
rgy at the Gaussian integration points. By using
six degrees of freedom, the present element can
model stiffened composite plate and shell structu-
res, composite plates and shells with isotropic
and/or composite stiffeners, folded plates, shell
junctions, box-junctions, etc.

Using the small strain assumption,"” the upda-
ted Lagrangian form of the total potential energy
ina co-rotational coordinate system has the follo-
wing form

In= ~;— f (A'NA'e, + AMA'e, + A'QA'e)dS
1 J - t t‘ t; rA
y (NAML+ MAT,+QAMNS 2

+ % f (NA'S, + MAG,+'QAE)AS—t SAV

where t and t+ At denote the current and next
configuration respectively. Using the principle of
stationary potential energy (8I1=0), the increme-
ntal equilibrium equation, from which the total
tangent stiffness matrix and internal forces are
derived, is obtained. The full formulation is prese-
nted in[11].

2.2 Linear Buckling Analysis

If the deformations up to the critical peint are
neglected then the initial displacement matrix a
in the following equation (3) is identically equal
to zero. As the response of the structure prior
to buckling is limited to a linear elastic behaviour,
all stresses vary proportionally to a loading para-
meter. The stability condition may then be written
as follows:

KotKs) a=0 (3)

By applying to the structure a reference level of
loading and carrying out a linear eigenvalue anal-
ysis, the critical buckling ioad is obtained. In adi-
tion, eigenvector displacements describe any pos-
sible buckling mode which the structure may wish
to adopt.

2.3 Nonlinear Buckling Analysis

In nonlinear solution, the equilibrium equation
must be satisfied throughout the complete history
of loading and the nonlinear processing will be
stopped only when the out of balance forces are
negligible within a certain convergence limit. Sol-
ving for the displacement, the displacement must
be updated using the current incremental displa-
cement. The incremental nonlinear equilibrium
equation can be written as

(Ko+'Ko)Aa="4F—f @

In general, it is necessary to apply an iterative
technique derived from Newton-Raphson method
for the solution of the system of nonlinear equa-
tions. However, it is impossible to solve the post-
buckling problem with snap-through behaviour th-
rough a general nonlinear solution algorithm ba-
sed on Newton-Raphson method. This is due to
the singularity which arises in the tangent stiff-
ness matrix near the limit point. To extend the
stability analysis beyond the limit point, i.e. in the
post-buckling range, more appropriate procedures
must be applied. One approach is to use the arc
length control method in conjunction with New-
ton-Raphson method."®. In the finite element ana-
lysis package used, such an algorithm has been
implemented together with alternative strategies
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Table 1. Non-dimensionalized buckling loads (—%—r:—a-) for cross ply plates {a/h= 10} with various
T

number of layers

NL (Number 3-D Elasticity HSDT FSDT CPT Present
of Layers) (Ref. 15) (Ref. 16) (Ref. 16) (Ref. 16)

3 22.8807 22312 22.315 26.160 223182

5 24.5929 24.727 24.574 36.160 24.5501

9 25.3436 25.671 25.495 36.160 25.4984

based on displacement rate control."?

2.4 Numerical Examples

As a first validation example, the buckling load
of a moderately thick composite plate (thickness
ratio a/h=10) with 3, 5 and 9 layers (0°/90°/0°---)
obtained using the above element is compared
with the results from first-order transverse shear
deformation theory (FSDT), higher order transve-
rse shear deformation theory (HSDT), 3-D elasti-
city theory and classical plate theory (CPT). Com-
parison of results is given in Table 1, and satisfac-
tory agreement is obtained for the cases conside-
red.

Furthermore, the results of an incremental non-
linear analysis for an asymmetric cross-ply (0°/
90°) boron-epoxy laminate (thickness ratio a/h=
100) are presented (Fig. 1). The reference solution
is the analytical approach followed by Zhang and
Matthews?., Due to asymetry about the middle-

150
e Angle ply(present)
Unidirectional ply(present)
a Angle plyl 4|
100 A gle oiyld]
° Unidirectional plyl4l
Nb?
E+h®
S0
0 Al L] A L3 L]
] 20 40 60 80
Fibre angle

Fig. 1. Comparison of finite element resuits with
analytical solutions (boron-epoxy cross ply
panel)
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surface, bending due to membrane-bending me-
chanical coupling is induced from the beginning
of loading. The results shown in Fig. 1 reveal good
agreement, in geneal, but exhibit some small disc-
repancy mainly in the vicinity of the critical load.
As pointed out by Sheinman and Frostig” this
may be due to the type of Galerkin solution adop-
ted in [5]. In fact, comparison with the limit load
obtained using a modified Galerkin solution, which
minimizes the error introduced by the truncation
of the series and the partial fulfilment of the bou-
ndary conditions,” is in very good agreement with
the finite element solution.

3. Numerical Modelling of GFRP Curved
Panels

As mentioned before, shell structures under in-
plane loading lose stability at much lower loads

Fig. 2. Geometry and ply numbering
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than those calculated from linear buckling analy-
sis. Calculating the critical buckling load by eigen-
value analysis as well as tracing the full equilib-
rium path using nonlinear analysis have been
among the most important and challenging finite
element problems in structural engineering, In the
following, the behaviour of axially compressed
GFRP panels is investigated using the shell finite
element described above.

The overall geometry of and loading on the cu-
rved panel are shown in Fig. 2. The aspect ratio
was kept constant (a/b=1) and the total thickness
was also kept fixed at 2.5 mm. Four curvature va-
lues were investigated, namely R/t=100, 200, 400
and 1000. In view of the constant aspect ratio,
the arc angle varied between 57.3° and 5.7° res-
pectively. The curvature parameter defined by
Koiter® varied between 2.9 and 0.9, implying that
if the panels were isotropic, they should all exhibit
unstable post-buckling behaviour. The boundary
conditions on the panels were specified using local
coordinates to enahle tangential and radial const-
raints to be imposed and, with reference to a typi-
cal set of local axes shown in Fig. 2, are given
by:

u=u,=¥,=¥,=0 (Curved edges)
w=u,=¥,=¥,=0 (Straight edges)

Thus, the panels are assumed to be simply sup-
ported and restrained. In order to avoid the limi-
tations imposes by symmetry lines, the entire pa-
nel was modelled and the load was applied on
both sides, with appropriate constraints introduced
to avoid rigid body motions.

In terms of material modelling, each panel is
composed of twenty plies (ply thickness=0.125
mm), whth the following properties assumed for
each ply (typical GFRP material):

E; =5.38X10* N/mm?* E;=179x10* N/mm?;
GI,T =89X 103 N/mmz; V];r =0.25

The lay-up configurations considered are:

(a) Angle-ply (6/—8)s, where 6=0°, 15°, 30°,
45°, 60°, 75°, 90°
(b) Cross-ply (90°/0°)s,

{c) Quasi-isotropic (0°/18°/—18°/36°/—36°/54°
/—54°/72°/—72°/90°);

The last lay-up is considered a ‘quasi-isotropic’
configuration on the basis that the extensional
stiffness {Al satisfies the following conditions A;;
=Ay, Ay—An=2Ag and Ajs=Ax=0. However,
it is clear that the bending stiffness {D} does not
satisfy isotropic criteria and that bending-twisting
coupling exists. This coupling is also present in
angle-ply cases but vanishes in the cross-ply con-
figuration. All laminates are symmetric about the
middle-surface in order to eliminate the effect of
mechanical membrane-bending coupling, i.e. {B}=
0.

Before proceeding with the full parametric
study, the influence of the finite element mesh
was quantified. Several cases were studied in or-
der to examine the effect of boundary conditions
(restrained vs. unrestrained), panel curvature
(‘shell’ type vs. ‘plate’ type) and convergence
of eigenvalue clusters. As expected, panels with
high curvature required a finer mesh and the
same was true in the case of restrained panels
(compared to unrestrained panels). As a result,
a 12X12 mesh was adopted for R/t=100 and a
8X8 mesh for all other R/t values.!V

4. Analysis of Resuits

4.1 Linear Buckling Analysis

The first step in the parametric study consisted
of eigenvalue analyses for the various panels exa-
mined. This type of analysis has several limita-
tions in shell buckling problems but can still pro-
vide some useful information, first as a prelimi-
nary assessment of ply orientation on buckling
strength and, secondly, as a guide in selecting
appropriate imperfection modes for nonlinear ana-
lysis.

The results show that for constant R/t values,
the effect of ply orientation on the critical load
of angle-ply panels is, in general, fairly small but
more noticeable for low R/t. Thus, the range of
critical buckling loads at R/t=100 was between
409~436 N/mm, with 6=45° corresponding to the
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Fig. 3. Effect of R/t ratio on critical buckling load
of GFRP curved panels

lowest value and 8=15° 75° to the highest. The
cross-ply panel gave the highest critical load (445
N/mm), whilst the quasi-isotropic configuration
resulted in the lowest value (389 N/mm).

The effect of radius to thickness ratio for typicai
cases is shown in Fig. 3 and follows the expected
trend. However, it is worth pointing out that all
the panels were analysed with constant width and
as a result the narrowness parameter @k changes
from 2.9 to 0.9 as R/t varies from 100 to 1000.
Additional runs were carried out to quantify the
reduction in buckling load when the narrowness
parameter is kept constant at 2.9 and it was found
that this is between 5~15% for the panels exami-
ned.

The rather small variations at constant R/t for
different lay-ups are expected in GFRP panels,
since the ratio of moduli is small compared to
other composite materials. On the other hand, it
is interesting to note that despite the samall diffe-
rences in the critical buckling load, the effect on
the corresponding buckling mode is significant.
It may be observed that GFRP panels with R=250
mm exhibit shell-type buckling behaviour (i.e.
“chess-board” modes and “axi-symmetric” modes)
depending on the fibre orientation. Fig. 4 shows
the mode associated with the lowest eigenvalue
for a typical selection of panels with R/t=100.
Returning to panels with shell-type behaviour
(R=250 mm) it is interesting to note that for 8=
45° the buckling mode is similar to the one corre-
sponding to an isotropic panel. In this case Dy;=D

H134% HA4Y - 19934 9 H
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Fig. 4. Buckling mode shape of GFRP curved pa-
nels (R/t=100)

Table 2. Stiffness ratios of GFRP lay-ups

Lay-up Du/Dy, D1s/Du Da2s/Dzs
(45/—45)s, 1 0.0466 0.0466
(15/—15)ss 0.37 0.012 0.023
(75/—75)ss 2.68 0.023 0.012
Cross ply 0.85 0 0
Quasi-isotropic 1.97 0.022 0.003

22 and Dyg==Dys. For other angle-ply cases, these
relations do not hold and this may explain the
reason for the chess-board type modes, coupled
in some case (e.g. 0=15°) with a degree of skew-
ness. Table 2 summarizes the properties of the
bending stiffness D in terms of the above mentio-
ned ratios.

These results also indicate that the critical im-
perfection shapes in composite panels may vary
substantially depending on ply orientation. It is,
therefore, essential to carry out detailed imperfec-
tion surveys on experimental models and, if possi-



ble, on real full-scale shells, so that dominant mo-
des can be identified. As a result, characteristic
imperfection models can gradually be developed
for different manufacturing methods and lay-up
configurations to include not only ‘critical’ modes
but also modes with large mean amplitudes.®

4.2 Non-linear Analysis

As mentioned avove, linear eigenvalue analysis
is only the. first step in studying the buckling res-
ponse of composite panels. A non-linear increme-
ntal analysis is required even for symmetrically
layered panels, in order to quantify imperfection
sensitivity. Apart from computational problems,
the choice of a suitable imperfection shape is the
most difficult task in deriving sensible results
from this type of analysis. One possible approach
would be to select modes on the basis of the follo-
wing two criteria, based on procedures developed
for isotropic shells where imperfection sensitivity
and the selection of relevant modes has occupied
researchers for many years:

(a) criticality; for example, an imperfection
mode affine to the buckling mode obtained from
linear analysis: (although, due to non-linear pre-
buckling, this is not necessarily the mode associa-
ted with the highest imperfection sensitivity); al-
ternatively, a mode that is found to grow significa-
ntly in the pre-buckling stage of a non-linear anal-
ysis may be identified and selected as a ‘critical’
imperfection mode; finally, the effect of localised
imperfection modes needs to be investigated.

(b) large amplitude; this would involve either
direct measurement of imperfections on panels fo-
llowed by harmonic analysis or information availa-
ble on characteristic models from imperfection da-
tabanks.

The latter is not currently available for compo-
site shells, although recent work has shown that
valuable information can be obtained about domi-
nant modes and their statistical dependence if im-
perfection data on groups of similarly manufactu-
red specimens is properly recorded and analysed.
@) For the purposes of the present study, it was
decided to select imperfection shapes only on the
bais of criticality as determined from linear eigen-
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Fig. 6. Load-end shortening response of angie-ply
{45°/—~45°)s, panels

value analysis. A further problem that had to be
resolved was to determine the maximum imperfe-
ction amplitude that can be allowed in the panel.
It is, of course, inappropriate to use tolerance va-
lues from steel codes due to the entirely different
manufacturing methods used in producing compo-
site panels. On the basis of previous studies that
have been carried out on aircraft structures® it
was decided to specify the maximum allowable
amplitude as a fraction of the thickness. Thus,
a maximum value of 10% of the thickness was
adopted, although this is probably too stringent
for less critical applications. Finally, it is worth
noting that in this study, the load is applied on
one of the two curved edges and that control on
the fastest growing nodal displacement is enforced
in order to follow the equilibrium path in the post-
buckling range.

Fig. 5 shows the load-end shortening response
obtained for (+45°%)s, angle-ply for two different
R/t values. As expected, the curves show unstable
behaviour after the limit load is attained, typical
of wide panels. For the angle-ply panel with R/t=
100, the numerical knockdown factor (defined
here as the limit load obtained from non-linear
analysis divided by the critical buckling load from
linear eigenvalue analysis) is 0.80 for an imperfec-
tion amplitude equal to 5% of the thickness (not
shown on this plot but estimated from an additio-
nal finite element analysis) and drops to 0.71 for
10%. For R/t=1000, the limit load is higher than
the critical buckling load resulting in a ‘knock-
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(b) limit load
N =294 N/fmmn

(c) post-buckling
N 302!8 N/man

(a) pre-buckling
N = 49 Nfmm

Fig. 6. Deflected shapes of angle-ply (45°/— 45°)s,
panel (R/t=100, w,=0.1 1)

down’ factor of about 1.2. It is worth noting that
results for geometrically identical cross-ply panels
reveal ‘knock-down” factors which are consisten-
tly below unity, namely 0.70 for R/t=100 and 0.91
for R/t=1000.

In order to understand the features of non-li-
near response, it is also helpful to examine the
deflected shapes at various stages of loading (pre-
buckling, limit load and post-buckling), typically
shown in Fig. 6 for an angle-ply panel with R/t=
100 and a 10% maximum imperfection. As can
be seen, in the pre-buckling range, the deflection
grows outwards in a mode sympathetic to the im-
perfection imposed (i.e, with three axial waves and
a single circumferential half-wave) and this mode
is prevalent also at the limit load, although evide-
nce of larger growth close to the edges is shown.
The latter is more clearly observed in the post-
buckling deflected shape. The magnification factor
applied to these diagrams is, of course, different.
It may be concluded, that in this case, although
there are clear differences between pre- and post-
buckled shapes, the interaction between imperfec-
tion, pre-buckling and buckling mode shapes resu-
lts in a smooth transition, which as expected, is
associated with a degree of imperfection sensiti-
vity.

Similar plots for the angle-ply panel with R/t=
1000 reveal that the change in deflected shape
from pre- to post-buckling stage is more sudden
and this explains the value of the “knockdown’
factor being above unity, since it appears that
there is no sensitivity to the critical mode shape.
This, of course, does not imply absence of imper-
fection sensitivity but, rather, that the selection
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Fig. 7. Knock-down factors for GFRP curved pa-

nels

of imperfection modes on the basis of linear eige-
nvalue analysis is not always appropriate and
more eleborate criteria need to be developed.

Fig. 7 summarizes the information regarding
knockdown factors for GRFP curved dpanels un-
der axial compression and the following comments
are appropriats:

(i) in general, imperfection sensitivity in sym-
metrically layered composite panels is lower than
in isotropic panels (cf. a wide panel exhibiting cy-
linder-type behaviour for which the knockdown
factor for an imperfection amplitude equal to 10%
of the thickness is about 0.55).

(ii) imperfection sensitivity is higher for low R/t
ratios and high @y values, as expected.

(iii) the results are in line with the conjecture
that ‘optimized’ panels show higher imperfection
sensitivity, since the cross-ply panels give rise to
the lowest set of knockdown factors.

(iv) the reason for the angle-ply results has
been explained above and further studies will be
performed in order to quantify the observed
trend.

5. Conclusions

Results have been presented from a parametric
study on axially compressed GFRP curved panels.
The effect of ply orientation on critical buckling
loads was found to be small for various angle-ply
panels at constant curvature, although when cross-
ply and quasi-isotropic lay-ups are considered the
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variation in critical loads increases to about 12%.
More significantly, a large range of buckling mode
shapes was observed which has implications for
both imperfection sensitivity studies and the spe-
cification of tolerances in structural codes.

Incremental: npnlinear analyses were also car-
ried out for a number of cases in order to quantify
imperfection sensitivity and estimate knockdown
factors. Imperfection modelling has been based on
the critical mode determined from linear eigenva-
lue analysis and the limitations associated with
this approach have been outlined. It has been
shown that symmetrically layered wide composite
curved panels (i.e. exhibiting unstable shell-type
behaviour) have relatively high knockdown factors
compared to ‘their isotropic counterparts. The
smallest knockdown factor' is about 0.70 and, in
general, factors were lower for low R/t ratios,
which is in agreement with similar results found
in a previous study on CFRP panels[6].

However, further work is needed in this area,
especially in experimental studies to validate re-
sults which are so far based only on numerical
analysis. Theoretical work to determine the chara-
cteristics of post-buckling behaviour (for example,
in terms of the b-coefficients derived from initial
post-buckling analysis) are also required for com-
posite panels. The specification of imperfection to-
lerances is another area that needs to be investi-
gated by quantifying the effect of manufacturing
metheds on final geometry. Finally, appropriate
failure criteria should be developed using, as far
as possible, experimentally observed failure mo-
des. All these aré essential ingredients in order
to promote structural applications of composite
materials in the offshore field and to move towa-
rds the development of validated limit state de-
sign criteria for composite shells.

Notation
In : total potential energy
\) : potential energy
A : Co-rotational value attributed to pure
deformation

: resultant membrane force, bending

moment and transverse shear force
: linear membrane, bending and trans-
. verse shear strain
NMm Mb MNs : Non-linear membrane, bending and
transverse shear strain

€m, €b €

Ko : global linear elastic stiffness matrix,

Ke : global geometric stiffness matrix

tratg : vector of externally applied loads
and

' : internal incremental forces.

a : eigen vector defining the buckling
mode shape

Acr : eigenvalue

a : panel length

b : panel width

t : panel thickness (total)

W, : initial imperfection amplitude

E, : Young's modulus parallel to fibre di-
rection

Er : Young’s modulus perpendicular to fi-
bre direction

Gir : Shear modulus

N : axial compressive load

N : critical buckling load (eigenvalue
analysis)

N, : limit load (non-linear analysis)

R : radius of curvature

0 : fibre angle

Vv, vir : Posson’s ratio

Ok : Koiter’s curvature or narrowness pa-
rameter

Units used throughlut are N, mm.
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