• Title/Summary/Keyword: Elastic cylinder

Search Result 169, Processing Time 0.033 seconds

The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion (접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향)

  • Lee, Jung-Min;Kim, Byung-Min;Jung, Young-Deuk;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

Theoretical Study of Design Parameters for the Thermal Stress in Engine Exhaust Manifold (엔진 배기매니폴드의 열응력 발생에 관한 설계 인자들의 이론적 연구)

  • Choi, Bok-Lok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2007
  • Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from the fact that thermal expansions of the runners are restricted by inlet flange clamped to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Since the failure of an exhaust manifold is mainly caused by geometric constraints between the cylinder head and the manifold, the thermal stress can be controlled by geometric factors. The generic geometric factors include the inter distance (2R), the distance from the head to the outlet (L), the tube diameter(d) and the tube thickness (t). This criteria based on elastic analysis up to onset of yield apparently indicate that the pre-stress also reduces the factor; however, high temperature relaxation may reduce this effect at later operation stage.

  • PDF

Effect of Coating Layer Hardness on Frictional Characteristics of Diesel Engine Piston Ring (디젤엔진 피스톤 링 코팅 층의 경도에 따른 마찰특성)

  • Jang, J.H.;Joo, B.D.;Lee, H.J.;Kim, E.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.465-470
    • /
    • 2009
  • The frictional behaviors of Cermets/Cr-Ceramics and Cu-Al coatings of piston ring were investigated. Friction tests were carried out by pin-on-disk test and materials properties of coating layer were analyzed by nano indentation tester. The effect of surface roughness of cylinder liner on the friction coefficient was analyzed. This study provided tribological data of hard and soft piston ring coatings against cylinder liner. The surface roughness does exert an influence on the average friction coefficient, with smoother surfaces generally yielding lower friction coefficients. In case of hard-coating, the scratch depth, width and pile-up height had close relationship with hardness. So the scratch width, depth and pile-up height increases with decreasing friction coefficient. But in case of soft-coating, the friction coefficients are strongly dependent on the morphological characteristics such as, scratch depth, width, pile-up height and elastic modulus.

An Analysis of Axisymmetric Cylindrical Shell by the Leading Matrix Method (인도행렬에 의한 축대칭 원통형 쉘의 해석)

  • 이관희;박준용;김우중
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.193-201
    • /
    • 2004
  • The aim of this study is focused on getting an almost exact solution which is the simplicity and exactness of an axisymmetrically loaded cylindrical shell. This method replaces the finite element method which is a very powerful tool for analysis of any kind of structure which has an arbitrary shape, but is still a numerical analysis. Instead, this study uses the method of distribution of end actions which is a kind of iteration technique to implement the leading matrix method. The distribution and carry-over factors of a cylinder are calculated by the theory of a differential equation of a beam on an elastic foundation. The results are satisfactory when this method is applied to a cylinder that is subjected to a concentrated load and hydrostatic pressure when compared with the BEF analogy separately.

Strength and strain modeling of CFRP -confined concrete cylinders using ANNs

  • Ozturk, Onur
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.225-239
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) has extensive use in strengthening reinforced concrete structures due to its high strength and elastic modulus, low weight, fast and easy application, and excellent durability performance. Many studies have been carried out to determine the performance of the CFRP confined concrete cylinder. Although studies about the prediction of confined compressive strength using ANN are in the literature, the insufficiency of the studies to predict the strain of confined concrete cylinder using ANN, which is the most appropriate analysis method for nonlinear and complex problems, draws attention. Therefore, to predict both strengths and also strain values, two different ANNs were created using an extensive experimental database. The strength and strain networks were evaluated with the statistical parameters of correlation coefficients (R2), root mean square error (RMSE), and mean absolute error (MAE). The estimated values were found to be close to the experimental results. Mathematical equations to predict the strength and strain values were derived using networks prepared for convenience in engineering applications. The sensitivity analysis of mathematical models was performed by considering the inputs with the highest importance factors. Considering the limit values obtained from the sensitivity analysis of the parameters, the performances of the proposed models were evaluated by using the test data determined from the experimental database. Model performances were evaluated comparatively with other analytical models most commonly used in the literature, and it was found that the closest results to experimental data were obtained from the proposed strength and strain models.

Transient Dynamic Stress Analysis of Transversely Isotropic Cylinders Subject to Longitudinal Impact (충격압축하중을 받는 횡등방성 중실축의 과도 동적해석)

  • Oh, Guen;Sim, Woo-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.521-532
    • /
    • 2007
  • Elastic wave propagations in the semi-infinite transversely isotropic cylinder under various kinds of longitudinal impact loads are analyzed using the axisymmetric finite element method and Houbolt time-integration scheme. For which the finite element program is newly constructed and verified through the comparison of present numerical results with those by other researchers. E-type glass-epoxy composite cylinders with different fiber volume fractions are adopted and studied in detail with dynamic responses of the isotropic cylinder. Three dimensional wave motions are given in graphic form to show the realistic view of the wave propagation. Nondimensionalized dynamic characteristic variables which relate the size of finite element mesh, the time step, and the wave speed are presented for obtaining accurate and stable numerical results.

Behavior and Optimization of Cylinder Applied by Composite Tape Wrapping Method (복합재/AISI4340 이중구조 후육실린더의 구조적 거동 및 최적화)

  • Lee, Kyeong-Kyoo;Kim, Wie-Dae
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.22-29
    • /
    • 2011
  • To increase the performance of thick-walled cylinders recently their length is continually enlarged. For that reason it is important to reduce weight of the thick-walled cylinders. In this paper the FE models to predict and estimate effects on the composite tapes were created with MSC.Nastran/Patran v.2005. First of all a autofrettage method was applied to the 2D model of the AISI4340 cylinder reduced the thick. And then the comparison of the numerical results with analysis results showed and verified by using T300/5208, IM7/PETI5, IM7/8552 tapes. Those are predicted to the effects of the angle of the composite tapes and elastic modulus according to the composite properties.

Study on Wear Properties of GCV Materials with DLC Coating (GCV소재의 DLC 코팅 마모특성에 관한 연구)

  • Lee, Soo-Chul;Kim, Nam-Seok;Nam, Ki-Woo;Ahn, Seok-Hwan;Kim, Hyun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.71-75
    • /
    • 2010
  • Although Graphite Compacted Vermicular (GCV) was first observed in 1948, the narrow range for stable foundry production precluded the high volume application of GCV to complex components such as cylinder blocks and heads until advanced process control technologies became available. This, in turn, had to await the advent of modern measurement electronics and computer processors. Following the development of foundry techniques and manufacturing solutions, primarily initiated in Europe during the 1990s, the first series production of GCV cylinder blocks began during 1999. Today, more than 40,000 GCV cylinder blocks are produced each month for OEMs, including Audi, DAF, Ford, Hundai, MAN, Mercedes, PSA, Volkswagen, and Volvo. Given that new engine programs are typically intended to support three to four vehicle generations, the chosen engine materials must satisfy current design criteria and also provide the potential for future performance upgrades without changing the overall block architecture. With at least a 75% increase in the ultimate tensile strength, a 40% increase in the elastic modulus, and approximately double the fatigue strength of either iron or aluminum, GCV is ideally suited to meet current and future of engine design and performance requirements.

Analytical study on hydrodynamic motions and structural behaviors of hybrid floating structure

  • Jeong, Youn-Ju;Lee, Du-Ho;Park, Min-Su;You, Young-Jun
    • Ocean Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.35-53
    • /
    • 2013
  • In this study, a hybrid floating structure with cylinder was introduced to reduce the hydrodynamic motions of the pontoon type. The hybrid floating structure is composed of cylinders and semi-opened side sections to penetrate the wave impact energy. In order to exactly investigate the hydrodynamic motions and structural behavior of the hybrid floating structure under the wave loadings, integrated analysis of hydrodynamic and structural behavior were carried out on the hybrid floating structure. Firstly, the hydrodynamic analyses were performed on the hybrid and pontoon models. Then, the wave-induced hydrodynamic pressures resulting from hydrodynamic analysis were directly mapped to the structural analysis model. And, finally, the structural analyses were carried out on the hybrid and pontoon models. As a result of this study, it was learned that the hybrid model of this study was showed to have more favorable hydrodynamic motions than the pontoon model. The surge motion was indicated even smaller motion at all over wave periods from 4.0 to 10.0 sec, and the heave and pitch motions indicated smaller motions beyond its wave period of 6.5 sec. However, the hybrid model was shown more unfavorable structural behavior than the pontoon model. High concentrated stress occurred at the bottom slab of the bow and stern part where the cylinder wall was connected to the bottom slab. Also, the hybrid model behaved with the elastic body motion due to weak stiffness of floating body and caused a large stress variation at the pure slab section between the cylinder walls. Hence, in order to overcome these problems, some alternatives which could be easily obtained from the simple modification of structural details were proposed.

On the Contact Behavior Analysis and New Design of High Pressure Piston Seals

  • Kim, Chung-Kyun;Cho, Seung-Hyun;Kim, Sung-Won;Ko, Young-Jin;Kim, Jong-Soo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.117-119
    • /
    • 2002
  • In this paper, the geometry effectiveness and contact modes as functions of real contact length on a cap ring have been analyzed for high pressure sealing mechanism in reciprocating actuator. The reaction force and elastic strain energy density are very important parameters for analyzing the sealing performance of an ACGT ring seal. For the high pressure of 800bar and the maximum speed of 3m/s, the main piston is reciprocating along the linear line against the cylinder wall. The computed results indicate that the length ratio of a cap ring is more influential design parameter compared to that of the tribological contact mode. Thus, this paper recommends the discrete contact area rather than a conventional flat contact model. Especially, the sealing capacity is more improved when the length ratio of a cap ring is below 0.625.

  • PDF