• 제목/요약/키워드: Elastic beam structure

검색결과 228건 처리시간 0.02초

Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams

  • Arefi, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.579-590
    • /
    • 2018
  • Size-dependent free vibration responses and magneto-electro-elastic bending results of a three layers piezomagnetic curved beam rest on Pasternak's foundation are presented in this paper. The governing equations of motion are derived based on first-order shear deformation theory and nonlocal piezo-elasticity theory. The curved beam is containing a nanocore and two piezomagnetic face-sheets. The piezomagnetic layers are imposed to applied electric and magnetic potentials and transverse uniform loadings. The analytical results are presented for simply-supported curved beam to study influence of some parameters on vibration and bending results. The important parameters are spring and shear parameters of foundation, applied electric and magnetic potentials, nonlocal parameter and radius of curvature of curved beam. It is concluded that the increase in radius of curvature tends to an increase in the stiffness of curved beam and consequently natural frequencies increase and bending results decrease. In addition, it is concluded that with increase of nonlocal parameter of curved beam, the stiffness of structure is decreased that leads to decrease of natural frequency and increase of bending results.

Cyclic testing of chevron braced steel frames with IPE shear panels

  • Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1167-1184
    • /
    • 2015
  • Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.

변형 및 복원공정에 따른 실린더 형상 구조물의 응력분포 특성 (Evaluation of Characteristics for Stress Distribution on Cylindrical Beam Structure by Deformation and Restoration Process)

  • 박치용;김진원;부명환
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.132-138
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore damaged part of large machinery and structure which is installed in the hazard working place. In this paper, to estimate stress distribution which occurs during damage and restoration of cylindrical beam structure, the finite element technique has been used. A finite element model was verified by experiment for non deformed cylindrical beam structure. The displacements and elastic recovery have an excellent agreement between experiment and finite element analysis. The variations of stress distribution on deformation and restoration procedure for surfaces have been examined. The maximum von Mises stress appears in the surface for deformation and restoration procedure. In deformation procedure, the maximum stress occurs in the vicinity of support body. In restoration procedure, the maximum stress occurs in the vicinity of the fixing body. The fixing body allows avoiding stress concentration in adjacent support structure boundary.

강구조 특수모멘트골조의 보 소성변형요구량 평가 (Estimation of Beam Plastic Rotation Demands for Special Moment-Resisting Steel Frames)

  • 엄태성
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.405-415
    • /
    • 2011
  • 건축물의 안전한 내진설계를 위해서는 층간변위비 뿐만 아니라 부재에 요구되는 소성변형을 평가하여야 한다. 본 연구에서는 복잡한 비선형해석 없이 탄성해석을 사용하여 강기둥-약보로 설계된 철골 특수모멘트골조의 보에 요구되는 소성변형을 평가하는 간편한 방법을 개발하였다. 개발한 방법은 탄성해석 결과를 근거로 모멘트 재분배, 기둥 단면치수 및 보 소성힌지 이동, 패널존 변형, 중력하중, 변형경화 거동 등을 고려하여 보의 소성변형각을 직접적으로 예측한다. 또한 가새골조 또는 코어벽 등 횡력 저항구조와 모멘트골조의 상호 작용인 로킹 효과 고려한다. 검증을 위하여 강기둥-약보로 설계된 6층 특수모멘트골조에 제안된 방법을 적용하여 보의 소성변형각을 예측하고, 그 결과를 비선형 해석 결과와 비교하였다. 검증 결과, 제안된 방법은 설계 변수에 따른 보의 소성변형각을 합리적으로 예측하는 것으로 나타났다.

Slender piezoelectric beams with resistive-inductive electrodes - modeling and axial wave propagation

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.335-354
    • /
    • 2016
  • This contribution presents an extended one-dimensional theory for piezoelectric beam-type structures with non-ideal electrodes. For these types of electrodes the equipotential area condition is not satisfied. The main motivation of our research is originated from passive vibration control: when an elastic structure is covered by several piezoelectric patches that are linked via resistances and inductances, vibrational energy is efficiently dissipated if the electric network is properly designed. Assuming infinitely small piezoelectric patches that are connected by an infinite number of electrical, in particular resistive and inductive elements, one obtains the Telegrapher's equation for the voltage across the piezoelectric transducer. Embedding this outcome into the framework of Bernoulli-Euler, the final equations are coupled to the wave equations for the longitudinal motion of a bar and to the partial differential equations for the lateral motion of the beam. We present results for the wave propagation of a longitudinal bar for several types of electrode properties. The frequency spectra are computed (phase angle, wave number, wave speed), which point out the effect of resistive and inductive electrodes on wave characteristics. Our results show that electrical damping due to the resistivity of the electrodes is different from internal (=strain velocity dependent) or external (=velocity dependent) mechanical damping. Finally, results are presented, when the structure is excited by a harmonic single force, yielding that resistive-inductive electrodes are suitable candidates for passive vibration control that might be of great interest for practical applications in the future.

A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate

  • Mohammad Khorasani;Luca Lampani;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.633-644
    • /
    • 2023
  • Taking a look at the previously published papers, it is revealed that there is a porosity index limitation (around 0.35) for the mechanical behavior analysis of the functionally graded porous (FGP) structures. Over mentioned magnitude of the porosity index, the elastic modulus falls below zero for some parts of the structure thickness. Therefore, the current paper is presented to analyze the vibrational behavior of the FGP Timoshenko beams (FGPTBs) using a novel refined formulation regardless of the porosity index magnitude. The silica aerogel foundation and various hydrothermal loadings are assumed as the source of external forces. To obtain the FGPTB's properties, the power law is hired, and employing Hamilton's principle in conjunction with Navier's solution method, the governing equations are extracted and solved. In the end, the impact of the various variables as different beam materials, elastic foundation parameters, and porosity index is captured and displayed. It is revealed that changing hygrothermal loading from non-linear toward uniform configuration results in non-dimensional frequency and stiffness pushing up. Also, Al - Al2O3 as the material composition of the beam and the porosity presence with the O pattern, provide more rigidity in comparison with using other materials and other types of porosity dispersion. The presented computational model in this paper hopes to help add more accuracy to the structures' analysis in high-tech industries.

Study on the Frame Structure Modeling of the Beam Element Formulated by Absolute Nodal Coordinate Approach

  • Takahashi Yoshitaka;Shimizu Nobuyuki;Suzuki Kohei
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.283-291
    • /
    • 2005
  • Accurate seismic analyses of large deformable moving structures are still unsolved problems in the field of earthquake engineering. In order to analyze these problems, the nonlinear finite element method formulated by the absolute nodal coordinate approach is noticed. Because, this formulation has several advantages over the standard procedures on mass matrix, elastic forces and damping forces in the case of large displacement problems. But, it has not been fully studied to build frame structure models by using beam elements in the absolute nodal coordinate formulation. In this paper, we propose the connecting method of the beam elements formulated by the absolute nodal coordinate. The coordinate transformation matrix of this element is introduced into the frame structure. This beam element has the characteristic that the mass matrix and bending stiffiness matrix are constant even if in the case of large displacement problems, and this characteristic is being kept after the transformation. In order to verify the proposed method, we show the numerical simulation results of frame structures for a vibration problem and a large displacement problem.

토션빔 후륜 현가장치의 기구학적 특성 해석 (Kinematic Analysis of Torsion Beam Rear Suspension)

  • 강주석
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.146-153
    • /
    • 2004
  • Torsion beam rear suspension has been widely adopted to the rear suspension of vehicle by reason of simple structure and cost competitiveness. Since the kinematic characteristics of torsion beam rear suspension are determined by elastic behavior of torsion beam, quasi-static analysis based on finite element modeling of torsion beam has been conducted to obtain the kinematic parameters of torsion beam rear suspension. In this paper, simple kinematic equations with rear geometric parameters are derived to predict the kinematic behavior of torsion beam rear suspension. The suspension design parameters such as roll center height, roll stiffness, roll steer and roll camber can be easily obtained with the kinematic equations. The suggested kinematic equations are validated from comparison with the test results and solution offered by ADAMS. The suspension design parameters varied with the position of torsion beam are discussed.

SFRC구조물의 휨거동에 관한 해석적 연구 (Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제11권1호
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF

Vibration analysis of sandwich beam with nanocomposite facesheets considering structural damping effects

  • Cheraghbak, Ali;Dehkordi, M. Botshekanan;Golestanian, H.
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.795-806
    • /
    • 2019
  • In this paper, free vibration of sandwich beam with flexible core resting on orthotropic Pasternak is investigated. The top and bottom layers are reinforced by carbon nanotubes (CNTs). This sandwich structural is modeled by Euler and Frostig theories. The effect of agglomeration using Mori-Tanaka model is considered. The Eringen's theory is applied for size effect. The structural damping is investigated by Kelvin-voigt model. The motion equations are calculated by Hamilton's principle and energy method. Using analytical method, the frequency of the structure is obtained. The effect of agglomeration and CNTs volume percent for different parameter such as damping of structure, thickens and spring constant of elastic medium are presented on the frequency of the composite structure. Results show that with increasing CNTs agglomeration, frequency is decreased.