References
- Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
- Chan, D.Q., Anh, V.T.T. and Duc, N.D. (2018), "Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells in thermal environments", Acta Mech., 230, 157-178. https://doi.org/10.1007/s00707-018-2282-4
- Chung, D.N., Dinh, N.N., Hui, D., Duc, N.D., Trung, T.Q. and Chipara, M. (2013), "Investigation of Polymeric Composite Films Using Modified TiO2 Nanoparticles for Organic Light Emitting Diodes", J. Current Nanosci., 9, 14-20. https://doi.org/10.2174/157341313805118018
- Duc, N.D. (2014a), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi, Vietnam.
- Duc, N.D. (2014b), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", J. Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017
- Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. - A/Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004
- Duc, N.D. and Minh, D.K. (2010), "Bending analysis of threephase polymer composite plates reinforced by glass fibers and Titanium oxide particles", J. Computat. Mat. Sci., 49, 194-198. https://doi.org/10.1016/j.commatsci.2010.04.016
- Duc, N.D., Quan, T.Q. and Nam, D. (2013), "Nonlinear stability analysis of imperfect three phase polymer composite plates", J. Mech. Compos. Mater., 49, 345-358. https://doi.org/10.1007/s11029-013-9352-4
- Duc, N.D., Hadavinia, H., Thu, P.V. and Quan, T.Q. (2015), "Vibration and nonlinear dynamic response of imperfect threephase polymer nanocomposite panel resting on elastic foundations under hydrodynamic loads", Compos. Struct., 131, 229-237. https://doi.org/10.1016/j.compstruct.2015.05.009
- Duc, N.D., Khoa, N.D. and Thiem, H.T. (2018), "Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 25, 1157-1167. https://doi.org/10.1080/15376494.2017.1341581
- Dutta, G., Panda. S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Computat. Math., 3, 2573-2592. https://doi.org/10.1007/s40819-016-0256-6
- Daya, E.M., Azrar, L. and Potier-Ferry, M. (2004), "An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams", J. Sound Vib., 271, 789-813. https://doi.org/10.1016/S0022-460X(03)00754-5
- Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013
- Frostig, Y. (2003), "An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading", Int. J. Solids Struct., 40, 6613-6631. https://doi.org/10.1016/j.ijsolstr.2003.08.014
- Garcia-Maciasa, E. and Castro-Triguero, R. (2018), "Coupled effect of CNT waviness and agglomeration: A case study of vibrational analysis of CNT/polymer skew plates", Compos. Struct., 193, 87-102. https://doi.org/10.1016/j.compstruct.2018.03.001
- Kapuria, S., Ahmed, A. and Dumir, P.C. (2005), "An efficient coupled zigzag theory for dynamic analysis of piezoelectric composite and sandwich beams with damping", J. Sound Vib., 279, 345-371. https://doi.org/10.1016/j.jsv.2003.11.018
- Khalili, S.M.R., Botshekanan Dehkordi, M., Carrera, E. and Shariyat, M. (2013), "Non-linear dynamic analysis of a sandwich beam with pseudoelastic SMA hybrid composite faces based on higher order finite element theory", Compos. Struct., 96, 243-255. https://doi.org/10.1016/j.compstruct.2012.08.020
- Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
- Kutlu, A., Ugurlu, B., Omurtag, M.H. and Ergin, A. (2012), "Dynamic response of Mindlin plates resting on arbitrarily orthotropic Pasternak foundation and partially in contact with fluid", Ocean Eng., 42, 112-125. https://doi.org/10.1016/j.oceaneng.2012.01.010
- Lakreb, N., Bezzazi, B. and Pereira, H. (2015), "Mechanical behavior of multilayered sandwich panels of wood veneer and a core of cork agglomerates", Mater. Des., 65, 627-636. https://doi.org/10.1016/j.matdes.2014.09.059
- Li, Z., Chu, J., Yang, C., Hao, S., Bissett, M.A., Kinloch, I.A. and Young, R.J. (2018), "Effect of functional groups on the agglomeration of graphene in Nano composites", Compos. Sci. Technol., 163, 116-122. https://doi.org/10.1016/j.compscitech.2018.05.016
- Lim, J.Y. and Bart-Smith, H. (2015), "An analytical model for the face wrinkling failure prediction of metallic corrugated core sandwich columns in dynamic compression", Int. J. Mech. Sci., 92, 290-303. https://doi.org/10.1016/j.ijmecsci.2015.01.002
- Liu, Y., Yu, K., Hu, H., Belouettar, S., Potier-Ferry, M. and Damil, N. (2012), "A new Fourier-related double scale analysis for instability phenomena in sandwich structures", Int. J. Solids Struct., 49, 3077-3088. https://doi.org/10.1080/15376494.2015.1085606
- Loghman, A. and Cheraghbak, A. (2016), "Agglomeration Effects on Electro-magnetothermo Elastic Behavior of Nano-composite Piezoelectric Cylinder", Polym. Compos., 39(5), 1594-1603. https://doi.org/10.1002/pc.24104
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: A micromechanical approach", Aerosp. Sci. Technol., 49, 276-288. https://doi.org/10.1016/j.ast.2015.12.018
- Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016a), "Nonlinear flexural analysis of laminated composite panel under hygrothermo- mechanical loading-A micromechanical approach", Int. J. Computat. Meth., 13, 1650015. https://doi.org/10.1142/S0219876216500158
- Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Advan. Mater. Struct., 23, 1343-1359. https://doi.org/10.1080/15376494.2015.1085606
- Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016c), "Geometrically nonlinear flexural analysis of hygro-thermoelastic laminated composite doubly curved shell panel", Int. J. Mech. Mat. Des., 12, 153-171. https://doi.org/10.1007/s10999-015-9299-9
- Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. A/Solids 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall. Mater., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Nejati, M., Asanjarani, A., Dimitri, R. and Tornabene, F. (2017), "Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes", Int. J. Mech. Sci., 130, 383-398. https://doi.org/10.1016/j.ijmecsci.2017.06.024
- Qin, Q.H. and Wang, T.J. (2009), "A theoretical analysis of the dynamic response of metallic sandwich Beam under impulsive loading", Eur. J. Mech. A/Solids, 28, 1014-1025. https://doi.org/10.1016/j.euromechsol.2009.04.002
- Quan, T.Q., Tran, P., Tuan, N.D. and Duc, N.D. (2015), "Nonlinear dynamic analysis and vibration of shear deformable eccentrically stiffened S-FGM cylindrical panels with metal-ceramic-metal layers resting on elastic foundations", Compos. Struct., 126, 16-33. https://doi.org/10.1016/j.compstruct.2015.02.056
- Safaeia, B., Moradi-Dastjerdib, R. and Chu, F. (2018), "Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations", Compos. Struct., 192, 28-37. https://doi.org/10.1016/j.compstruct.2018.02.022
- Shokravi, M. (2018), "Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory", Steel Compos. Struct., Int. J., 28(3), 381-388. https://doi.org/10.12989/scs.2018.28.3.381
- Smyczynski, M.J. and Magnucka-Blandzi, E. (2018), "Stability of five layer sandwich beams - a nonlinear hypothesis", Steel Compos. Struct., Int. J., 28(6), 671-679. https://doi.org/10.12989/scs.2018.28.6.671
- Sorokin, S.V. and Grishina, S.V. (2004), "Analysis of wave propagation in sandwich beams with parametric stiffness modulations", J. Sound Vib., 271, 1063-1082. https://doi.org/10.1016/j.jsv.2003.03.005
- Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", IOP Conference Series: Materials Science and Engineering, 178(1), 012026. https://doi.org/10.1088/1757-899X/178/1/012026
- Thu, P.V. and Duc, N.D. (2016), "Nonlinear dynamic response and vibration of an imperfect three-phase laminated nanocomposite cylindrical panel resting on elastic foundations in thermal environments", J. Sci. Eng. Compos. Mater., 24(6), 951-962. https://doi.org/10.1515/secm-2015-0467
- Vuong, P.M. and Duc, N.D. (2018), "Nonlinear response and buckling analysis of eccentrically stiffened FGM toroidal shell segments in thermal environment", Aerosp. Sci. Technol., 79, 383-398. https://doi.org/10.1016/j.ast.2018.05.058
- Zeinedini, A., Shokrieh, M.M. and Ebrahimi, A. (2018), "The effect of agglomeration on the fracture toughness of CNTsreinforced Nano composites", Theoret. Appl. Fract. Mech., 94, 84-94. https://doi.org/10.1016/j.tafmec.2018.01.009
Cited by
- Evaluation of equivalent friction damping ratios at bearings of welded large-scale domes subjected to earthquakes vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.517