• Title/Summary/Keyword: Elastic Spring

Search Result 396, Processing Time 0.025 seconds

Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method (비정상 유한요소법을 이용한 고속응답 솔레노이드 밸브의 동적거동해석)

  • Kweon, Gi-Tae;Han, Hwa-Taik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.959-965
    • /
    • 2002
  • It is intended to develop an algorithm for dynamic simulation of a fast-acting solenoid valve. The coupled equations of electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balance acting on the plunger, which includes the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

Implementation of a Parallel Inverted Pendulum System with Decoupling Control (병렬형 역진자 시스템 제작 및 분리제어)

  • 김주호;박운식;최재원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.162-169
    • /
    • 2000
  • In this paper, we develop a parallel inverted pendulum system that has the characteristics of the strongly coupled dynamics of motion by an elastic spring, the time-variant system parameters, and inherent instability, and so on. Hence, it is possible to approximate some kinds of a physical system into this representative system and to apply the various control theories to this system in order to verie their fidelity and efficiency. For this purpose, an experimental system of the parallel inverted pendulum has been implemented, and a control scheme using the eigenstructure assignment for decoupling control is presented in comparison with the conventional LQR optimal control method. Furthermore, this system can be utilized as a testbed to develop and evaluate new control algorithms through various setups. Finally, in this paper, the results of the experiment are compared with those of numerical simulations for validation.

  • PDF

Fabrication and Experiment of Micromirror with Aluminum Pin-joint (알루미늄 핀-조인트를 사용한 마이크로 미러의 제작과 측정)

  • Ji, Chang-Hyeon;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.487-494
    • /
    • 2000
  • This paper describes the design, fabrication and experiments of surface-micromachined aluminum micromirror array with hidden pin-joints. Instead of the conventional elastic spring components as connection between mirror plate and supporting structure, we used pin-joint composed of pin and staples to support the mirror plate. The placement of pin-joint under the mirror plate makes large active surface area possible. These flexureless micromirrors are driven by electrostatic force. As the mirror plate has discrete deflection angles, the device can be ap;lied to adaptive optics and digitally-operating optical applications. Four-level metal structural layers and semi-cured photoresist sacrificial layers were used in the fabrication process and sacrificial layers were removed by oxygen plasma ashing. Static characteristics of fabricated samples were measured and compared with modeling results.

  • PDF

Elasto-Hydrodynamic Lubrication Characteristics of Bump Foil Bearings (범프포일베어링의 탄성유체윤활 특성)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.98-103
    • /
    • 2004
  • This paper presents modeling and simulation of the bump foil bearings with consideration of the elastic behavior of the foil and gas compressibility. Heshmat had originally introduced the simple compliance model to estimate the EHL(elasto-hydrodynamic lubrication) performance. But this approach can not consider the deflection of top foil at the edge of bearing, so model is insufficient to analyze in case that the eccentricity ratio is greater than I. So the top foil is considered as a simple beam model supported by linear spring elements, and the bump foil deflection can be simple compliance model. The EHL calculations are performed for convention rigid type, classical foil type, variable pitch type and double bump type toil bearings. This paper presents that 2nd or 3rd generation bearings have excellent performance in every speeds.

  • PDF

Plastification procedure of laterally-loaded steel bars under a rising temperature

  • Huang, Zhan-Fei;Tan, Kang-Hai;England, George L.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.699-715
    • /
    • 2010
  • This paper investigates the structural responses of axially restrained steel beams under fire conditions by a nonlinear finite element method. The axial restraint is represented by a linear elastic spring. Different parameters which include beam slenderness ratio, external load level and axial restraint ratio are investigated. The process of forming a mid-span plastic hinge at the mid-span under a rising temperature is studied. In line with forming a fully plastic hinge at mid-span, the response of a restrained beam under rising temperature can be divided into three stages, viz. no plastic hinge, hinge forming and rotating, and catenary action stage. During catenary action stage, the axial restraint pulls the heated beam and prevents it from failing. This study introduces definitions of beam limiting temperature $T_{lim}$, catenary temperature $T_{ctn}$ and warning time $t_{wn}$. Influences of slenderness ratio, load level and axial restraint ratio on $T_{lim}$, $T_{ctn}$ and $t_{wn}$ are examined.

Application of the Lateral Subgrade Reaction Modulus in Landing Pier (잔교식 안벽 해석시 수평지반반력계수의 적용)

  • Park, See-Boum;Kim, Ji-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1707-1711
    • /
    • 2008
  • Landing pier is connect from onshore to offshore with bridge type that a coast structure. The sub-structure is consisted of vertical or batter pile and combined reinforced concrete slab. These days useful design method of quay wall of landing pier type for pile foundation analysis abide by approximate depth of pile supported method, "Harbor and port design criterion, 2005 The ministry of land transport and maritime affairs". The approximate depth of pile supported is calculated two kind of method that one is assume to below depth of 1/$\beta$ from assumed submarine surface and other is 1st fixpoint depth by Chang(1937)'s theory. By this paper, FEM dynamic analysis of 3-dimensions was achieved that it has compared pile fixed end modeling with elastic spring modeling base on winkler theory.

  • PDF

A Study on the Characteristics of the Combined Generation System by Solar and Wind Energy with Power Storage Apparatus for the Geographical Features

  • Lim, Jung-Yeol;Kang, Byeong-bok;Cha, In-Su
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • The development of the solar and the wind energy is necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently MW Class power generation system has been developed, but it still has a few faults with the weather condition. In order to solve these existing problems, combined generation system of photovoltaic and wind power was suggested. It combines wind power energy and solar energy to have the supporting effect from each other. However, since even combined generation system cannot always generate stable output with everchanging weather condition, power storage apparatus that uses elastic energy of spiral spring to combined generation system was also added for the present study.

Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions

  • Ebrahimi, Farzad;Kokaba, Mohammadreza;Shaghaghi, Gholamreza;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.169-182
    • /
    • 2020
  • This study presents the hygro-thermo-electromagnetic mechanical vibration attributes of elastically restrained piezoelectric nanobeam considering effects of beam surface for various elastic non-ideal boundary conditions. The nonlocal Eringen theory besides the surface effects containing surface stress, surface elasticity and surface density are employed to incorporate size-dependent effects in the whole of the model and the corresponding governing equations are derived using Hamilton principle. The natural frequencies are derived with the help of differential transformation method (DTM) as a semi-analytical-numerical method. Some validations are presented between differential transform method results and peer-reviewed literature to show the accuracy and the convergence of this method. Finally, the effects of spring constants, changing nonlocal parameter, imposed electric potential, temperature rise, magnetic potential and moisture concentration are explored. These results can be beneficial to design nanostructures in diverse environments.

SMA-driven Biomimetic Finger Module for Lightweight Hand Prosthesis (경량 의수용 SMA 구동식 생체모방 손가락 모듈)

  • Jung, Sung-Yoon;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.69-75
    • /
    • 2012
  • This paper proposes a biomimetic finger module to be used in a lightweight hand prosthesis. The finger module consists of finger skeleton and an actuator module driven by SMA (Shape Memory Alloy). The prototype finger module can perform flexion and extension motions; finger flexion is driven by a contraction force of SMA, but it is extended by an elastic force of an extension spring inserted into the finger skeleton. The finger motions are controlled by feedback of electric resistance of SMA because the finger module has no sensors to measure length and angle. Total weight of a prototype finger module is 30g. In experiments the finger motions and finger grip force are tested and compared with simulation results when a constant contraction force of SMA is given. The experimental results show that the proposed SMA-driven finger module is feasible to the lightweight hand prosthesis.

Development of CAE Tools for Vehicle Suspension Design(I) -Development of a Bushing Module- (자동차 서스펜션 설계를 위한 CAE기법의 개발(I) -부싱 모듈 개발-)

  • Choi, Y.C.;Kim, K.S.;Kim, O.J.;Yoo, W.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.31-39
    • /
    • 1998
  • The role of bushing elements linked between suspension parts is to enhance ride quality and handling stability by the spring and damping effect from the elastic deformation. In this paper, a theoretical derivation and computer implementation off a bushing element are proposed. Three different vehicle models are generated to test the developed bushing module. The developed bushing module is implemented as a bushing module in the vehicle dynamic analysis program AUTODYN7.

  • PDF