• Title/Summary/Keyword: Elastic Rubber

Search Result 244, Processing Time 0.029 seconds

A Study on the Safety and Comfort of Pedestrians according to the Type of Sidewalk Pavement (보도포장의 종류에 따른 보행자의 안전성 및 쾌적감에 대한 연구)

  • Choi, Jae Jin
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.66-71
    • /
    • 2015
  • Safety, resilience and comfort of pedestrian were assessed by the British Pendulum Test and SB/GB factor test at 8 kinds of sidewalk pavement. Sidewalk paving materials were normal concrete, porous concrete, concrete block, soil concrete, asphalt, rubber chip/resin mixture, wood chip/resin mixture and floor tile. In addition, a survey was conducted to investigate the perception of pedestrians on the sidewalk paving material. As a result, while the skid resistance value was measured in the most 60BPN above, the floor tile showed a low value of about 30BPN. The ratios of SB factor to GB factor of the elastic pavements(rubber/resin mixture and wood chip/resin mixture) appeared to be relatively large when compared with those of the conventional sidewalks. The survey showed that respondents perceived as more safe and comfortable elastic pavements compared to conventional pavements. Approximately 50% of respondents answered that hardened soil pavement was the most environmentally friendly.

Development of a double cantilever sandwich beam method for evaluating frequency dependence of dynamic modulus and damping factor of rubber materials (고무의 동탄성계수와 손실계수의 주파수 의존성을 평가하기 위한 양팔 샌드위치보 시험법의 개발)

  • 김광우;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.19-22
    • /
    • 2001
  • This paper proposes a double cantilever sandwich-beam method for evaluating the frequency dependence of material dynamic characteristics. The flexural vibration of a double cantilever sandwich-beam specimen with a partially inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Quadratic relationships of dynamic elastic modulus and material loss factor of rubbers with frequency were quantitatively suggested employing the least square error method.

  • PDF

A Study on the Reinforcing Effects of Inorganic Filler Contained NR Vulcanizates with Temperature and Loading Variation. (무기충전제(無機充塡劑)를 변량배합(變量配合)한 천연(天然)고무 가황체(加黃體)의 온도변화(溫度變化)에 따른 보강성효과(補强性效果)의 연구(硏究))

  • Choi, Jae-Woon;Hong, Chung-Sug;Chun, Kyung-Soo
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.293-304
    • /
    • 1987
  • The purpose of this study is to examine the effect of rubber-filler attachments on inorganic filler contained NR vulcanizatic. The results of this study showed as follows. The reinforcing properties and damping values of the vulcanizates in the elastic region showed strong relation with the filler characteristics and temperture. The vulcanizates filled with nature-activated inorganic filler like silica had higer elastic modulus and damping values than the vulcanizates of nature-nonactivated inorganic filter. The reinforcing effects of differential filler loadings on NR raised the effects with temperature rise, but the damping values varied with the filler characteristics and temperature variations.

  • PDF

Vibration Control of a Beam Structure Using Hybrid Mounts (하이브리드 마운트를 이용한 빔구조물의 진동제어)

  • Kim, Seung-Hwan;Hong, Sung-Ryong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.440-445
    • /
    • 2002
  • A hybrid mount featuring elastic rubber and piezoelectric material is devised and applied to the vibration control of a beam structure. The governing equation of the beam structure associated with the hybrid mount is derived. Subsequently, a robust sliding mode controller is designed to attenuate the vibration of the beam structure due to external excitation. The controller is then simulated and control responses such as displacement and transmitted force are evaluated in time and frequency domains.

  • PDF

Vibration Control of a Beam Structure Using Hybrid Mounts (하이브리드 마운트를 이용한 빔구조물의 진동제어)

  • Kim, Seung-Hwan;Hong, Sung-Ryong;Park, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.347.1-347
    • /
    • 2002
  • A hybrid mount featuring elastic rubber and piezoelectric material is devised and applied to the vibration control of a beam structure. The governing equation of the beam structure associated with the hybrid mount is derived. Subsequently, a robust sliding mode controller is designed to attenuate the vibration of the beam structure due to external excitation. The controller is then simulated and control responses such as displatement and transmitted force are evaluated in time and frequency domains.

  • PDF

The Behavior and Estimated Stiffness Rubber Pad for Disk Bearing (디스크 받침용 고무패드의 거동 및 강성추정)

  • Cho, Sung-Chul;Choi, Eun-Soo;Park, Joo-Nam;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.599-605
    • /
    • 2009
  • The aim of the present study is the characteristics of bridge rubber pads and suggested how to determine the stiffness the pads. A disk bearing is operated as an elastic bearing in the vertical direction and is composed of a Polyether Urethane (polyurethane) disk for elastic support and Polytetrafluoroethylene (PTFE) to accommodate movement. Static tests are conducted in a laboratory to determine the static behavior of a Polyurethane disk. Finite Element (FE) analysis is also performed to verify the static performance. For dynamic behavior, four disk bearings having the identical Polyurethane disk used in the static tests are installed in a full size railway bridge and tested under a running locomotive. From the tests results, the static and dynamic stiffness of disk bearings are estimated and compared with each other. In the procedure to estimate the stiffness of a pad, the dead load(pre-load) of a bridge and live load of a vehicle are considered.

  • PDF

Thermal, Curing, Elastic, and Mechanical Properties of Ethylene Propylene Diene Monomer/Polybutadiene/Carbon Black Composites

  • Tae-Hee Lee;Keon-Soo Jang
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.142-151
    • /
    • 2023
  • In this study, we investigate the thermal and mechanical properties of composites comprising ethylene propylene diene monomer (EPDM) and polybutadiene (PB) obtained using carbon black (CB) as a reinforcing and compatibilizing filler. Owing to the significance of elastomeric materials in various industrial applications, blending of EPDM and PB has emerged as a strategic method to optimize the material properties for specific applications. This study offers insights into the blend composition, its microstructure, and the resulting macroscopic behaviors, focusing on the synergetic effects of composite materials. Furthermore, this study delves into curing and rheological behaviors, crosslink densities, and mechanical, thermal, and elastic properties of the elastomeric composites. Through systematic exploration, we believe that this study will be beneficial to material scientists and engineers working on developing advanced elastomeric composites.

An Evaluation of Elastic Aspects of PVC/MBS by An Acoustic Resonance Method (음향공진법을 이용한 PVC/MBS의 탄성적 특성 평가)

  • Lee, D.H.;Bahk, S.M.;Park, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.603-608
    • /
    • 2001
  • A certain amount of MBS rubber was added to improve toughness of PVC which has a strong tendency of being brittle, producing a mixture, PVC/MBS, from which test specimens were prepared. PVC has strong chemical resistance, oil resistance, frame retardancy and high mechanical strength. Also, it is relatively inexpensive to produce, but shows weakness to impact and difficult for processing. MBS, a typical toughening agent for PVC is generally known, when added in a small amount, to improve impact resistance and to minimize difficulties during the processing of the PVC without adversely affecting the positive aspects of the PVC. In this investigation, attempts were made to observe and determine the variations in elastic and damping constants of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests in this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. Generally, the magnitudes of elastic constants decrease while the damping capacity improves when MBS rubber was added.

  • PDF

Three-dimensional Finite Element Analysis of Rubber Pad Deformation (고무패드 변형의 3차원 유한요소해석)

  • Sin, Su-Jeong;Lee, Tae-Su;O, Su-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.121-131
    • /
    • 1998
  • This paper applies the FE analysis procedure, developed in the Part I of the companion article, to the three-dimensional rubber pad deformation during rubber-pad forming process. Effects of different algorithms corresponding to incompressibility constraint and time integration methods on numerical solution responses are investigated. Laboratory scale experiments support the validity of the developed FE procedure an demonstrate the accuracy of the numerical models. Full scale model responses are also predicted using the reasonable method and parameters obtained in laboratory modeling.

Theoretical Framework For Describing Strain Energy Function on Biomaterial (생체재료를 설명하는 스트레인 에너지 함수에 대한 이론적 고찰)

  • Kang, Taewon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. However, theoretical framework to describe and quantify the behaviour of blood vessel was not well established so far. For studying the biomechanical behavior of artery, Rubber-liked material which is similar to passive artery is selected since conventional theoretical interpretation is very limited to understand and predict the behavior of biomaterial. Rubber-like material is assumed to be very similar to artery and has properties of isotropy, homogeneity and is undergoing large deformation. Based on this assumption, stress developed on Rubber-like material is described by strain energy function and strain invariants which are required to understand the nonlinear elastic behavior of biomaterial. The descriptor which would be used for understanding the biomechanical behavior of artery is studied in this work.