• Title/Summary/Keyword: Elastic Pipe

Search Result 204, Processing Time 0.024 seconds

Investigation of the Performance Based Structural Safety Factor of Elbows in Nuclear Power Plants (원전 엘보우의 성능기반 안전여유도 분석)

  • Lee, Sung-Ho;Park, Chi-Yong;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.826-831
    • /
    • 2009
  • The piping systems in nuclear power plant are composed of various typed pipes such as straight, elbow pipe, branch and reducer etc. The elbow is connected from straight pipe to another pipes in order to establish the complicated piping system. Elbow is one of very important components considering management of wall thinning degradation. It is however applied by various loads such as system pressure, earthquake, postulated break loading and many transient loads, which provoke simply the internal pressure, bending and torsional stress. In this study, firstly pipes in the secondary system of the nuclear power plant are classified as pipe size and type for selecting the investigating range. Next, a large number of finite element analysis considering the all typed dimensions of commercial pipe has been performed to find out the behavior of TES(twice elastic slop) plastic load of elbows, which is based on evaluation of the structural safety factor. Finally performance based structural safety factor was investigated comparing with maximum allowable load by construction code.

Numerical Analysis using Direct Shear Test Model for the Behavior of Buried Pipeline by the Fault Motion (단층활동시 매설 파이프라인의 거동에 대한 직접진단 시험모델 수치해석)

  • 장신남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.64-74
    • /
    • 1999
  • The frequency of earthquake occurrence tends to increase in Korea. Therefore, the stability of pipeline, such as watersupply pipe, gas pipe, and oil pipe etc. across fault zones in Gyoung-sang landmass is very important, expecially , in metropolitan area. There were some examples of the construction of buried pipeline across fault zones in Korea. the interactiion between the buried pipeline across fault zones and the ground is considered. As well, in the interfaces of them, the direct shear numerical analysis model including elasto-plastic joint element is assumed that the retained dilatancy theory in them, otherwise. Also, the other elements are modeled the ground is nonlinear elastic coutinuaus beam, respectively. In this study, the maximum shear force point exist inside retaine zone(anchored zone) during shwar (as fault sliding), and the distribution of pipeline's behavior is all alike them of pipeline buried in ladnsliding grounds. Since the pipeline is not continuous beam but jointed by steel-pipe segments , practically, on acting of a large bending moment or a shear force, then, those are may be unstable. The reaearch on this point may be new approach.

  • PDF

Numerical and Experimental studies on pipeline laying for Deep Ocean Water (해양심층수 취수관 부설을 위한 수치해석적 및 실험적 연구)

  • JUNG DONG-HO;KIM HYOUN-JOO;KIM JIN-HA;PARK HAN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.29-34
    • /
    • 2004
  • Numerical and experimental studies on pipeline laying for intake Deep Ocean Water are carried out. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional pipe equations. Fluid non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Seabed is modeled as elastic foundation with linear spring and damper. Top tension and general configuration of pipeline at a depth are predicted. It is found that control for tension to prevent being large curvature of pipeline is needed on th steep seabed and, it should be considered 23.5 ton of tension at a top of pipe on the process of pipeline laying at 400m of water depth The largest top tension of pipe on condition of the beam sea during pipe laying is shown from the experiment. The results of this study can be contributed to the design of pipeline laying for upwelling deep ocean water.

  • PDF

Wavelet Analysis of Elastic Wave for Wall Thinned High-Pressure Service Pipes (감육을 가지는 고압배관에 대한 탄성파의 Wavelet해석)

  • Kim, Jin-Wook;Ahn, Seok-Hwan;Lee, Si-Yoon;Nam, Ki-Woo;Do, Jae-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.1-8
    • /
    • 2005
  • We studied on the nondestructive evaluation of the elastic wave signals of locally wall thinned straight pipe. Wavelet transform was applied for the time-frequency analysis of waveforms obtained by fracture wave detector due to the dropping steel ball. The time-frequency analysis provides time variation of each frequency component involved in a waveform, which makes it possible to evaluate the shape of local wall thinning at each frequency. In this study, comparison by wavelet transform of the AE signals and monotonic bending tests without internal pressure are conducted on 1.91 inch diameter full-scale carbon steel pipe specimens. As the results of tests, fracture behaviors could be shown by the characteristic of mechanical strength of locally wall thinned pipes and the waveforms could be evaluated for the integrity insurance of the piping system according to the length and depth range of the deffeted shape pipes in the real field.

  • PDF

A Study on the Verification Test for a Deformable Rod Sensor (변형봉 센서 검증실험에 관한 연구)

  • 김상일;최용규;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.35-47
    • /
    • 2003
  • In the conventional axial load transfer analysis for composite piles (i.e., steel pipe pile filled with concrete), it was assumed that the concrete's strain is same as the measured steel's strain and the elastic modulus of the steel and the concrete calculated by formular as prescribed by specification is used in calculation of pile axial load. But, the pile axial load calculated by conventional method had some difference with the actual pile load. So, the behavior of a composite pile could not be analyzed exactly. Thus, the necessity to measure the strain for each pile components was proposed. In this study, the verification test for DRS (Deformable Rod Sensor) developed to measure the strain of each pile component (i.e., the steel and the concrete) was performed. In the calculation of pile axial load using the DRS, elastic modulus of concrete could be determined by the uniaxial compression test for the concrete cylinder samples made in the test site and an average tangential modulus in the stress range of (0.2∼0.6)f$_ck$ was taken.

Fracture Behavior Estimation for Circumferential Surface Cracked Pipes (ll) - Finite Element Validation - (배관에 존재하는 원주방향 표면균열에 대한 파괴거동 해석 (ll) - 유한요소해석을 통한 검증 -)

  • Kim, Jin-Su;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.139-146
    • /
    • 2002
  • This paper provides validations of the reference stress based J and $C^{*}$ estimations, proposed in Part I, for inner, circumferential surface cracked pipes under internal pressure and global bending against detailed 3-D elastic-plastic and elastic-creep FE results. For this purpose, actual tensile properties of two typical stainless steels (TP304 and TP316) are used for elastic-plastic FE analyses and two realistic creep laws are used for elastic-creep FE analyses. For a total of twenty cases considered in this paper, agreements between the proposed reference stress based J and $C^{*}$ estimations and the FE results are excellent. More important aspect of the proposed estimations is that they can be used to estimate J and $C^{*}$ not only at the deepest point of the surface crack but also at an arbitrary point along the crack front.front.

Anchorage mechanism of inflatable steel pipe rockbolt depending on rock stiffness (팽창형 강관 록볼트의 암반 강성에 따른 정착 거동 특성)

  • Kim, Kyeong-Cheol;Kim, Ho-Jong;Jung, Young-Hoon;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.249-263
    • /
    • 2017
  • The expansion behavior of inflatable steel pipe rockbolt shows geometric nonlinearity due to its ${\Omega}-shaped$ section. Previous studies on the anchoring behavior of inflatable steel pipe rockbolt were mainly performed using theoretical method. However, those studies oversimplified the actual behavior by assuming isotropic expansion of inflatable steel pipe rockbolt. In this study, the anchoring behavior of the inflatable steel pipe rockbolt were investigated by the numerical method considering the irregularity of pipe expansion and other influencing factors. The expansion of inflatable steel pipe rockbolt, the contact stress distribution and the change of the average contact stress and the contact area during installation were analyzed. The contact stresses were developed differently depending on the constitutive behavior of rocks. Small contact stresses occurred in steel pipes installed in elasto-plastic rock compared to steel pipes installed in elastic rock. Also, the anchoring behaviors of the inflatable steel pipe rockbolt were different according to the stiffness of the rock. The steel pipe was completely unfolded in the case of the stiffness smaller than 0.5 GPa, but it was not fully unfolded in the case of the stiffness larger than 0.5 GPa for the given analysis condition. When the steel pipe is completely unfolded, the contact stress increases as the rock stiffness increases. However, the contact stress decreases as the rock stiffness increases when the steel pipe is not fully expanded.

Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment (크리프 수명 평가를 위한 간략 크리프 응력 산출 방법론 분석)

  • Seo, Jun Min;Lee, Han Sang;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.703-709
    • /
    • 2017
  • Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the $M{\alpha}-tangent$ method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep stress and the alternative methods; however, in the $M{\alpha}-tangent$ method, the results were affected by the element size.

Effect of Ground Subsidence on Reliability of Buried Pipelines (지반침하가 매설배관의 건전성에 미치는 영향)

  • 이억섭;김동혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.173-180
    • /
    • 2004
  • This paper presents the effect of varying boundary conditions such as ground subsidence, internal pressure and temperature variation for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function incorporating with von-Mises failure criteria is used in order to estimate the probability of failure mainly associated with three cases of ground subsidence. Using stresses on the buried pipelines, we estimate the probability of pipelines with von-Mises failure criterion. The effects of varying random variables such as pipe diameter, internal pressure, temperature, settlement width, load for unit length of pipelines, material yield stress and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the pipeline crossing ground subsidence regions which have different soil properties.

Effect of Internal Pressure on Plastic Limit Loads for Elbows with Circumferential Through-wall Crack under Closing Bending Incorporating Large Geometry Change Effects (대변형 효과를 고려한 원주방향 관통균열 엘보우의 닫힘굽힘 한계하중에 미치는 내압 영향 평가)

  • Hong, Seok-Pyo;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1778-1782
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper estimates effect of internal pressure on plastic limit loads for elbows with circumferential through-wall crack under in-plane bending incorporating large geometry change effects. Circumferential through-wall crack in extrados is considered. The FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method). For the bending mode, closing bending is considered. Other relevant variables affecting plastic limit loads are systematically varied, related to pipe bend geometry (the mean radius, thickness and bend curvature) and defect geometry (the length of circumferential through-wall crack).

  • PDF